
Draft Study Material

Artificial Intelligence Assistant

(QP Code: NIE/SSC/Q1003)

Sector: Information Technology-Information Technology

Enable Services (IT-ITeS)

Grade X

PSS CENTRAL INSTITUTE OF VOCATIONAL EDUCATION
(a constituent unit of NCERT, under Ministry of Education, Government of India)

Shyamla Hills, Bhopal- 462 002, M.P., India

http://www.psscive.ac.in

AI Assistant, Grade X Page 1 / 190

© PSS Central Institute of Vocational Education, Bhopal 2025

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior permission of the publisher.

AI Assistant, Grade X Page 2 / 190

Preface

Vocational Education is a dynamic and evolving field, and ensuring that every student

has access to quality learning materials is of paramount importance. The journey of

the PSS Central Institute of Vocational Education (PSSCIVE) toward producing

comprehensive and inclusive study material is rigorous and time-consuming, requiring

thorough research, expert consultation, and publication by the National Council of

Educational Research and Training (NCERT). However, the absence of finalized study

material should not impede the educational progress of our students. In response to

this necessity, we present the draft study material, a provisional yet comprehensive

guide, designed to bridge the gap between teaching and learning, until the official

version of the study material is made available by the NCERT. The draft study material

provides a structured and accessible set of materials for teachers and students to utilize

in the interim period. The content is aligned with the prescribed curriculum to ensure

that students remain on track with their learning objectives.

The contents of the modules are curated to provide continuity in education and

maintain the momentum of teaching-learning in vocational education. It encompasses

essential concepts and skills aligned with the curriculum and educational standards.

We extend our gratitude to the academicians, vocational educators, subject matter

experts, industry experts, academic consultants, and all other people who contributed

their expertise and insights to the creation of the draft study material.

Teachers are encouraged to use the draft modules of the study material as a guide and

supplement their teaching with additional resources and activities that cater to their

students' unique learning styles and needs. Collaboration and feedback are vital;

therefore, we welcome suggestions for improvement, especially by the teachers, in

improving upon the content of the study material.

This material is copyrighted and should not be printed without the permission of the

NCERT-PSSCIVE.

Deepak Paliwal

(Joint Director)

PSSCIVE, Bhopal

April, 2025

AI Assistant, Grade X Page 3 / 190

STUDY MATERIAL DEVELOPMENT COMMITTEE

Members

Deepak D. Shudhalwar, Professor (CSE), Department of Engineering and Technology,
PSSCIVE, NCERT, Bhopal, Madhya Pradesh

Prakash Khanale, Sr Coordinator, School of Computer Science, YCMOU, Nashik, Ex-
Professor and Head, Department of Computer Science, DSM College, Parbhani,
Maharashtra

Member Coordinator

Deepak D. Shudhalwar, Professor (CSE), Head, Department of Engineering and
Technology, PSSCIVE, NCERT, Bhopal, Madhya Pradesh

AI Assistant, Grade X Page 4 / 190

CONTENT

Module 1. Python Programming

Session 1. Control Structures in Python

Session 2. Functions in Python

Module 2. Data Science

Session 1. Introduction to NumPy

Session 2. Array Manipulation using NumPy

Session 3. Array Computation using NumPy

Module 3. Data Analysis

Session 1. Introduction to Pandas

Session 2. Coding with Pandas

Session 3. Data Visualisation using Matplotlib

Module 4. Neural Network

Session 1. Artificial Neural Network (ANN)

Session 2 Applications of Neural Network

Session 3. Machine Learning Tools

Module 5. AI Project

Session 1. Project Guidelines

Session 2. Project Formats

Session 3. Project Review

Session 4. Sample Project

AI Assistant, Grade X Page 5 / 190

Module1. Python Programming
In our daily life there are some situations where we have to follow a fixed

sequence of steps to complete a task and in other situations we have choices of

steps to complete a task. For example, in air travel every passenger has to follow

the following steps to board an airplane.

1. Show ticket and identity proof at the main entrance of the Airport.

2. Scanning of luggage.

3. Take your boarding pass.

4. Pass security check.

5. Finally, board the plane.

Passengers don’t have the choice to change the sequence of above written steps

to board on the airplane. On the other hand, Passengers can take their boarding

pass from the airline's check-in counter or they can also get a boarding pass at

an electronic kiosk nearby as shown in Figure 1.1. Similarly, in programming

generally statements are executed from beginning to end as in the sequence they

are written. But we may encounter some situations in programming also where

statements are required to change the normal sequence of execution. In this

unit we are going to discuss the control flow with decisions and loops.

Fig. 1.1: Steps to board on airplane

AI Assistant, Grade X Page 6 / 190

Session 1. Control Structures in Python

In computer programming a series of statements executed in top-down order.

The order of execution of the statements in a program is known as flow of

control. The flow of control can be implemented using control structures.

When the program needs to make some decisions depending on different

situations, then this is achieved using control flow statements. Python supports

two types of control structures – selection and repetition. The if statement is

of selection type, whereas for and while structure are of repeatition type.

There are three types of if statements in Python - if, for and while. The

statement if and for is of the selection type and while is of repetition type.

In this session, you will understand these control structures with their syntax

and how to use it in Python programming.

1.1 if Statement

In real life when we need to make some decisions and based on these decisions, we

decide what we should do next. Similar situations arise in programming also where we

need to make some decisions and based on these decisions we execute the next block of

code. Decision making statements in programming languages decide the direction of

flow of program execution. Decision making statements available in Python are:

 if statement

 if...else statements

 if-elif ladder

1.1.1 if statement

The if statement is used to check a condition: if the condition is true, we run a

block of statements (called the if-block).

Syntax

The syntax for if statement is as follows.

if test expression:

statement(s)

The program evaluates the test expression and will execute statement(s) only if

the text expression is True. If the text expression is False, the statement(s) is

not executed.

In Python, the body of the if statement is indicated by the indentation. Body

starts with an indentation and the first unindented line marks the end. Python

interprets non-zero values as True. None and 0 are interpreted as False.

Flowchart

The flowchart of if statement is shown in Figure 1.2.

AI Assistant, Grade X Page 7 / 190

Fig. 1.2 : Flowchart of if statement

Example 1.1: Let us take an example to understand the control flow of if

statement from the following example. The program check the age entered by

the user to make the decision that whether a person is eligible to vote or not. In

India if the age is greater than or equal to 18 the person is eligible to vote.

When you run the program with three different inputs of age 20, 18 and 17, the

output will be as below:

In the above example, if the age entered by the user is greater than 18, then the

message is printed as “You are ELIGIBLE to vote”. If the condition is true,

then the indented statement(s) are executed otherwise not.

AI Assistant, Grade X Page 8 / 190

The indentation implies that its execution is dependent on the condition. There

is no limit on the number of statements that can appear as a block under the if

statement.

1.1.2 if...else Statement

A variant of if statement called if....else statement that allows writing two

alternative paths and the control condition determines which path gets

executed.

Syntax

The syntax for if....else statement is as follows.

if test expression:

 Body of if

else:

 Body of else

The if...else statement evaluates test expression and will execute the body of if

only when the test condition is True.

If the condition is False, the body of another is executed. Indentation is used to

separate the blocks.

Flowchart

The flowchart of if...else statement is shown in Figure 1.3.

Fig. 1.3 : Flowchart of if...else statement

Example 1.2: Let us now modify the code in Example 1.1 to illustrate the use of

if else structure. The modified code is as below.

AI Assistant, Grade X Page 9 / 190

When you run the program with three different inputs of age 18, 20, and 17, the

output will be as below. Observe the difference with the output in Example 1.1.

In this example, if the age entered by the person is greater than or equal to 18,

s/he can vote. Otherwise, the person is not eligible to vote.

1.1.3 if...elif...else Statement

There may be a situation, when you have multiple conditions to check and these

all conditions are independent to each other. You can use elif statements to

include multiple conditional expressions after the if condition or between the if

and else control structure.

Syntax

The syntax for a selection structure using if … elif … else is as below.

if test expression:
 Body of if
elif test expression:
 Body of elif
else:
 Body of else

The elif is short for else if. It allows to check for multiple expressions. If the

condition for if is False, it checks the condition of the next elif block and so on.

If all the conditions are False, the body of else is executed. Only one block

AI Assistant, Grade X Page 10 / 190

among the several if...elif...else blocks is executed according to the condition.

The if block can have only one else block. But it can have multiple elif blocks.

Flowchart

The flowchart of if...else statement is shown in Figure 1.4

Fig. 1.4 : Flowchart of if...elif...else statement

Example 1.3 : Let us now modify the code in Example 1.2 to illustrate the use

of if…elif…else structure.

When you run the program with for three different inputs of age 18,19,17 the

output will be as below. Observe the difference with the output in Example 1.1.

and 1.2.

AI Assistant, Grade X Page 11 / 190

1.1.4 Nested if statements

Nested if statements have if...elif...else statement inside another if...elif...else

statement. This is called nesting in computer programming.

The number of statements can be nested inside one another. Indentation is the

only way to identify the level of nesting. This get confusing, so must be avoided if

it can be.

Example 1.4: of nested … if Statement

Let us now modify the above code to illustrate the use of nested if structure.

When you run the program for three different inputs of age 18,19,17 the output

will be as below. Observe the difference with the output in Example 1.1, 1.2 and

1.3.

AI Assistant, Grade X Page 12 / 190

Example 1.5: Write a program using nested if to check whether a number is

positive, negative, or zero.

When you run the program with four different inputs of number the output will

be as below.

Example: 1.6 Write a program to display the appropriate message as per the

color of signal at the road crossing.

AI Assistant, Grade X Page 13 / 190

When you run the program with four different inputs of number the output will

be as below.

Number of elif is dependent on the number of conditions to be checked. If the

first condition is false, then the next condition is checked, and so on. If one of

the conditions is true, then the corresponding indented block executes, and the

if statement terminates.

Example 1.7: Let us write a program to create a simple calculator to perform

basic arithmetic operations on two numbers. The program should do the

following:

 Accept two numbers from the user.

 Ask user to input any of the operator (+, -, *, /).

 An error message is displayed if the user enters anything else.

 Display only positive difference in case of the operator "-".

 Display a message “Please enter a value other than 0” if the user enters

the second number as 0 and operator ‘/’ is entered.

AI Assistant, Grade X Page 14 / 190

When you run the program with four different inputs of number the output will

be as below.

AI Assistant, Grade X Page 15 / 190

In the above program, for the operators "–" and "/", there exists an if...else

condition within the elif block. This is called nested if. There can be many levels

of nesting inside if...else statements.

It is possible to use if … elif structure as illustrated. In the latest version of

Python, a much more powerful and flexible construct called Structural Pattern

Matching is available. It can be used as a simple switch statement but is

capable of much more.

1.1.5 Structural pattern matching

Structural pattern matching introduces the match…case statement and the

pattern syntax to Python. The match…case statement follows the same basic

outline as switch...case in other programming languages. It takes an object,

tests it against one or more match patterns, and takes an action if it finds a

match.

Python performs matches by going through the list of cases from top to bottom.

On the first match, Python executes the statements in the corresponding case

block, then skips to the end of the match block and continues with the rest of

AI Assistant, Grade X Page 16 / 190

the program. There is no “fall-through” between cases, but it’s possible to design

your logic to handle multiple possible cases in a single case block. Let us take

an example to use structural pattern matching.

Example 1.8: Write a program to illustrate the use of structural pattern matching.

In the above program, values entered by the user are stored in variable digits.

The values written after the case will be matched with the value of the digit one

by one. If digit = 0 as specified in case 0 then statement to print zero will be

executed. If the digit is not equal to 0, control will go to the next case statement

specified as case 1. If digit =1, a statement to print one will be executed.

Similarly, it will go on for case 2 to case 9. For the last case, if the digit is

anything except digits 0 to 9, It will print “Invalid input”.

AI Assistant, Grade X Page 17 / 190

Assignment 1.1

1. Write a program to check whether a number is divisible by 7 or not.

2. Write a program to check whether an alphabet is a vowel or consonant.

3. Write a program to input the month number and print the month name.

4. Write a program to check if a triangle is equilateral, isosceles or scalene

on the basis of the length of the sides provided by the user.

1.1.6 Indentation

In most programming languages, the statements within a block are put inside

curly brackets. However, Python uses indentation for block as well as for nested

block structures. Leading whitespace (spaces and tabs) at the beginning of a

statement is called indentation. In Python, the same level of indentation

associates statements into a single block of code. The interpreter checks

indentation levels very strictly and throws up syntax errors if indentation is not

correct. It is a common practice to use a single tab for each level of indentation.

In the following program the if-else statement has two blocks and the

statements in each block are indented with the same amount of spaces or tabs.

In the above program, the condition num 1 > num 2 is false for the values of

num1 and num2 taken in the program. Therefore, the block of statements

associated with else will be executed as shown in the output.

AI Assistant, Grade X Page 18 / 190

1.2 Repetition

Sometimes we need to repeat tasks such as payment of electricity bills to be

paid every month. Let us take an example which illustrates an iterative process

in nature also. Figure 11.3 shows the phases of the day like morning, midday

and evening. These phases are repeated every day in the same order.

Fig. 1.5 : Phases of the day

Another example where we repeat steps is calculation of mean marks for each

student of the class separately. First, we list the steps to calculate mean of the

marks scored in 5 subjects by a student

1. Read the marks scored by the student in five subjects.

2. Calculate sum of the marks of all 5 subjects.

2. Divide the sum by 5.

3. Result will be stored as mean.

Above steps will be repeated for each student of the class to get mean marks.

This kind of repetition is also called iteration. Repetition of a set of statements in

a program is made possible using looping constructs. To understand further, let

us look at the following program to print the first 5 natural numbers.

AI Assistant, Grade X Page 19 / 190

In the above program, print () function is used 5 times to print 5 different

natural numbers. But in the situation to print the first 100,000 natural

numbers, it will not be efficient to write 100,000 print statements. In such cases

it is better to use loop or repetition in the program.

Looping constructs provide the facility to execute a set of statements in a

program repetitively, based on a condition. The statements in a loop are

executed again and again as long as the particular logical condition remains

true. This condition is checked based on the value of a variable called the loop

control variable. When the condition becomes false, the loop terminates. It is the

responsibility of the programmer to ensure that this condition eventually does

become false so that there is an exit condition and it does not become an infinite

loop. For example, if we did not set the condition count <= 100000, the program

would have never stopped. There are two looping constructs in Python - for and

while. Let us learn these looping constructs in detail.

1.2.1 For Loop

The for statement is used to iterate over a range of values or a fixed number of

sequences. The for loop is executed for each of the items in the range. These

values can be numeric, string, list, or tuple.

AI Assistant, Grade X Page 20 / 190

Syntax

for <control-variable> in <sequence/items in range>:

 <statements inside body of the loop>

With every iteration of the loop, the control variable checks whether each of the

values in the range have been traversed or not. When all the items in the range

are exhausted, the control is then transferred to the statement(s) immediately

following the for loop. In for loop, it is known in advance how many number of

times the loop will execute.

Flowchart

The flowchart depicting the execution of for loop is given in Figure 1.6.

Fig. 1.6 : Flow chart of for loop

Example 1.9 : Write a program using a for loop to find the sum of all numbers

stored in a list.

When you run the program, the output will be:

AI Assistant, Grade X Page 21 / 190

In the above program, numbers are a sequence of integers. Variable val

represents different integers in different iterations of the for loop. So, it prints

the sum of all elements in the list.

Example 1.10: Write a program to check the number as even or odd stored in a

list.

When you run the program, the output will be:

The above program illustrates the use of for loop in Python. Let us also take a

look at how the range function can be used with a for loop.

The Range() Function

The range () is a built-in function in Python. Syntax of range () function is:

range (start, stop, step)

It is used to create a list containing a sequence of integers from the given start

value upto stop value (excluding stop value), with a difference of the given step

value. Following examples illustrate the use of the range() function for various

conditions.

AI Assistant, Grade X Page 22 / 190

In function range (), start, stop and step are parameters. More on functions is

covered in next chapter. The start and step parameters are optional. If the start

value is not specified, by default the list starts from 0. If step is also not

specified, by default the value increases by 1 in each iteration. It will take

start=0 and step=1 by default.

All parameters of range() function must be integers. The step parameter can be a

positive or a negative integer excluding zero. Negative value of step parameter of

range () function will generate a decreasing sequence as illustrated in the above

example.

The function range () is often used in for loops for generating a sequence of

numbers as illustrated below.

In above python code, function range (10) will generate a sequence of numbers

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Variable num will hold the elements of this sequence

AI Assistant, Grade X Page 23 / 190

one by one for different iterations of the for loop. In each iteration of the for loop

print(num) statement will be executed. Therefore, all the elements of the

sequence will be printed one by one as shown in output.

Assignment 1.2

1. Write a program to print odd numbers from the given list using a for

loop.

2. Write a program to display a list that stores squares of the elements of

a given list.

3. Write a program using a for loop that prompts the user for a hobby 3

times, then appends each one to a list named hobbies. Display the

elements of list hobbies.

1.2.2 While Loop

The while statement allows to repeatedly execute a block of statements as long

as a condition is true.

The control condition of the while loop is executed before any statement inside

the loop is executed. After each iteration, the control condition is tested again

and the loop continues as long as the condition remains true. When this

condition becomes false, the statements in the body of the for loop are not

executed and the control is transferred to the statement immediately following

the body of the while loop. If the condition of the while loop is initially false, the

body is not executed even once.

A while statement is an example of what is called a looping statement. A while

statement can have an optional else clause.

Syntax

while test expression :

 body of while

The statements within the body of the while loop must ensure that the condition

eventually becomes false, otherwise the loop will become an infinite loop, leading

to a logical error in the program.

Flowchart

The flowchart of the while loop is shown in Figure 1.7.

AI Assistant, Grade X Page 24 / 190

Fig. 1.7 : Flowchart of while Loop

Example 1.11 : Following program will illustrate the use of a while loop.

When you run the program, the output will be:

AI Assistant, Grade X Page 25 / 190

Assignment 1.3

1. Write a program to print the first 10 even numbers using a while loop.

2. Write a program to find the sum of the digits of a number accepted from

the user.

3. Write a program to reverse the number accepted from the user using a

while loop.

4. Write a program to check if the input number is Palindrome or not.

5. Write a program to check if the input number is Armstrong or not.

1.3 Break and Continue Statement

Looping constructs allow programmers to repeat tasks efficiently. In certain

situations, when some particular condition occurs, we may want to exit from a

loop or skip some statements of the loop before continuing further in the loop.

This can be achieved by using break and continue statements, respectively.

Python provides these statements as a tool to give more flexibility for the

programmer to control the flow of execution of a program.

1.3.1 Break Statement

The break statement alters as it terminates the current loop and resumes

execution of the statement following that loop. The flowchart of the break

statement is shown in Figure 1.8.

Fig. 1.8: Flowchart for using break statement in loop

Example 1.12: Let us take a program to demonstrate use of break in for loop.

Program to demonstrate use use of break statement
num = 0
for num in range(10):
 num = num +1
 if num == 8:
 break
print('Number has value'+str(num))
print('Encountered break !! Out of loop')

AI Assistant, Grade X Page 26 / 190

When you run the program, the output will be:

In the above program, when the value of num becomes 8, the break statement is

executed and the for loop terminates.

Example 1.13: Consider another example to find the sum of all positive

numbers using a while loop. When the number entered is negative stop taking

further input and display the sum.

Find the sum of all positive numbers by taking the
input using a while loop. Stop taking input when the
number entered is negative using break statement
sum=0
print("Enter the number :")
while True:
 num = int(input()) # typecast string to integer
 if (num<0):
 break
 sum = sum + num
print("Sum = ",sum)

AI Assistant, Grade X Page 27 / 190

When you run the program, the output will be:

Example 1.14: Consider the following example to check if the number entered

is prime or not.

Program to check the input number is prime or not
num=int(input("Enter the number to check :"))
flag=0 # Assign flag as 0
if num>1:
 for i in range(2,int(num/2)):
 if (num % i == 0):
 flag = 1
 # number is not prime
 if flag==1:
 print(num,"is not a prime number")
 else:
 print(num,"is a prime number")
else:
 print("Number entered is <=1, execute again!")

AI Assistant, Grade X Page 28 / 190

When you run the program, the output will be:

Assignment

1. Write a program to find the location of a particular item in a list.

2. Find output of the following Python code:

for val in "string":

AI Assistant, Grade X Page 29 / 190

 if val == "i":

 break

 print(val)

print("The end")

1.3.2 Continue Statement

When a continue statement is encountered, the control skips the execution of

remaining statements inside the body of the loop for the current iteration and

jumps to the beginning of the loop for the next iteration. If the loop’s condition is

still true, the loop is entered again, else the control is transferred to the

statement immediately following the loop. Figure 1.9 shows the flowchart of the

continue statement.

Fig. 1.9: Flowchart of continue statement

Example 1.15: Following program illustrates the use of the continue statement

to find even and odd numbers from 0 to 9.

Demonstrate the use of continue statement
Program to print ODD/EVEN numbers from 0-9
num = 0
print("ODD numbers from 0-9")
for num in range(9):
 num = num + 1
 if num%2 == 0:
 continue
 print("The next ODD number is :",num)
print('End of for loop')
print("EVEN numbers from 0-9")
for num in range(9):
 num = num + 1
 if num%2 != 0:
 continue
 print("The next EVEN number is:",num)
print('End of for loop')

AI Assistant, Grade X Page 30 / 190

When you run the program, the output will be:

Observe that the value 3 is not printed in the output, but the loop continues

after the continue statement to print other values till the for loop terminates.

Assignment

1. Write a program to print values from 1 to 20 except multiples of 3.

2. Write a program to print all the prime numbers from 1 to 50.

AI Assistant, Grade X Page 31 / 190

1.3.3 Nested For Loops

A loop may contain another loop inside it. A loop inside another loop is called a

nested loop. The inner or outer loop can be any type, such as a while loop or for

loop. For example, the outer for loop can contain a while loop and vice versa.

The outer loop can contain more than one inner loop. There is no limitation on

the chaining of loops.

Nested loops are typically used for working with number and star pattern

programs. These are also useful to work with multidimensional data structures,

such as printing two-dimensional arrays, iterating a list that contains a nested

list.

Example 1.16: Following program illustrates the use of nested for loop.

Program to print each adjective for every
fruit in given list using nested for loop
print("Using nested for loop")
adj = ["Big","Tasty"]
fruits=["Apple","Guava","Mango"]
for x in adj:
 for y in fruits:
 print(x,y)

When you run the program, the output will be:

AI Assistant, Grade X Page 32 / 190

Example 1.17: Consider another program to print the pattern input by the

user.

Program to Generate the pattern
of the number input by the user
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
num=int(input("Enter a number : "))
for i in range(1,num+1):
 for j in range(1,i+1):
 print(j,end=" ")
 print()

When you run the program, the output will be:

AI Assistant, Grade X Page 33 / 190

Example 1.18: Consider another program to find the prime numbers between 1

to 10 using a nested loop.

Program to find prime numbers
between 0-9 using nested loop
print("Generate prime numbers in 0-9")
num=1
for i in range(0,9):
 j=2
 while(j<=(i/2)):
 if(i%j==0): # factor found
 break # out of loop
 j+=1
 if(j>i/j): # no factor found
 print(i, "is a prime number")
print("Bye Bye!!")

When you run the program, the output will be:

AI Assistant, Grade X Page 34 / 190

Example 1.19: Consider another program to find the factorial of a given

number.

Program to find the factorial of a given number
num=int(input("Enter a number: "))
fact=1
Check the number for negative, positive or zero
if num<0:
 print("No factorial for -ve no.")
elif num==0:
 print("The factorial of 0 is 1")
else:
 for i in range(1,num+1):
 fact=fact*i
 print("Factorial of",num, "is",fact)

When you run the program, the output will be:

AI Assistant, Grade X Page 35 / 190

Assignment

1. Write a program using nested loops to produce a rectangle of * with 6 rows

and 20 * per row.

2. Write a program to print a pattern like:

a. b. c. d. e.

1
2 2
3 3 3
4 4 4 4
5 5 5 5 5

1
2 1
3 2 1
4 3 2 1
5 4 3 2 1

A
A B
A B C
A B C D
A B C D E

 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

CHECK YOUR PROGRESS

A. Multiple Choice Questions

1. Python supports two types of control structures (a) permutation and

combination (b) module and library (c) built-in and user-defined (d)

selection and repetition

2. In programming, the concept of decision making or selection is

implemented with the help of (a) if else statement (b) for loop (c) while loop

(d) Functions

3. In Python, the same level of indentation associate statements into (a) a

single block of code (b) a single loop (c) a single function (d) a single control

structure

4. Which key is used for each level of indentation (a) \t (b) \n (c) @ (d) #

5. Repetition of a set of statements in a program is made possible using (a) if-

else (b) loops (c) data types (d) functions

6. When the condition associated with a loop becomes false, the loop (a)

terminates (b) continues (c) fails (d) produce error

7. Which function is used to create a list containing a sequence of integers

from the given start value up to stop value (excluding stop value), with a

difference of the given step value (a) range() (b) random() (c) maths() (d) int()

8. The start and step parameters of range() function are (a) optional (b)

mandatory (c) default (d) invalid

9. All parameters of range() function must be (a) integer (b) float (c) list (d)

tuple

10. The step parameter of range() function can be a positive or a negative

integer excluding (a) 0 (b) 1 (c) -1 (d) -2

AI Assistant, Grade X Page 36 / 190

11. Function range(x) will generate a sequence of numbers

[0,1,2,3,4,5,6,7,8,9,10]. Then x=? (a) 10 (b) 11 (c) -10 (d) -11

12. Which of the following is not used as for loop in Python? (a) for loop (b)

while loop (c) do-while loop (d) None of the above

13. In a Python program, a control structure: (a) defines program-specific data

structures (b) directs the order of execution of the statements in the

program (c) dictates what happens before the program starts and after it

terminates (d) None of the above

14. How many times will the loop run? (a) 2 (b) 3 (c) 1 (d) 0

i=2

while(i>0):

i=i-1

15. What will be the output of the following code? (a) 12 (b) 1, 2 (c) 0 (d) Error

x = 12

for i in x:

print(i)

B. State whether True or False

1. There is no limit on the number of statements that can appear as a block

under the if statement.

2. The statements in a loop are executed again and again as long as the

particular logical condition remains false.

3. The range () is a built-in function in Python.

4. The while statement executes a block of code repeatedly as long as the

control condition of the loop is true.

5. There is no limitation on the chaining of loops.

6. Keyword "break" can be used to bring control out of the current loop.

7. A loop becomes an infinite loop if a condition never becomes FALSE.

8. If the condition is TRUE the statements of if block will be executed

otherwise the statements in the else block will be executed.

9. Do-while is a valid loop in Python.

10. Break and continue are jump statements.

C. Fill in the Blanks

1. The order of execution of the statements in a program is known as

_______.

2. Python uses _________ for blocks as well as for nested block structures.

AI Assistant, Grade X Page 37 / 190

3. The interpreter checks indentation levels very strictly and throws up

_________ errors if indentation is not correct.

4. The _________ clause can occur with an if as well as with loops.

5. The break statement _________ the current loop and resumes execution of

the statement following that loop.

6. When a continue statement is encountered, the control _________ the

execution of remaining statements inside the body of the loop for the

current iteration and jumps to the beginning of the loop for the next

iteration.

7. A loop inside another loop is called a _________ loop.

8. Common use of nested loops is to print various _________ and _________

pattern.

9. For working with _________ data structures, such as printing two-

dimensional arrays, nested loops are typically used.

10. The statement to check if a is equal to b is if _________.

D. Programming Questions

1. Write a program that takes the input name and age and displays a

message whether the user is eligible to apply for a driving license or not.

The eligible age is 18 years.

2. Write a program to print the table of a given number entered by the user.

3. Write a program that prints the minimum and maximum of five numbers

entered by the user.

4. Write a program to check if the year entered by the user is a leap year or

not.

5. Write a program to generate the sequence: –5, 10, –15, 20, –25… up to n,

where n is an integer input by the user.

6. Write a program to find the sum of 1+ 1/8 + 1/27......1/n, where n is

entered by the user.

7. Write a program to find the sum of digits of an integer number, input by

the user.

8. Write a function that checks whether an input number is a palindrome or

not.

9. Write a program to find the largest number of a list of numbers entered

through the keyboard.

10.Write a program to input N numbers and then print the second largest

number.

AI Assistant, Grade X Page 38 / 190

Session 2. Functions in Python

In a marriage ceremony, a lot of work has to be done related to catering,

decoration and other things. In general, we assign these different tasks to a

particular group of people who are service providers to complete the work

smoothly. For example, catering work is assigned to caterers and decoration

work is assigned to decorators. This makes the process easy to manage.

Similarly, in programming also we use functions to do a specific task to make

our program modular and easy to read.

Fig. 2.1: Different tasks in a wedding ceremony

In programming, the use of function is one of the means to achieve modularity

and reusability. Function can be defined as a named group of instructions that

accomplish a specific task when it is invoked. Once defined, a function can be

called repeatedly from different places of the program without writing all the

codes of that function every time, or it can be called from inside another

function, by simply writing the name of the function and passing the required

parameters, if any. The programmer can define as many functions as desired

while writing the code.

In this session, you will understand the concept of functions and the benefits of

using functions. We will discuss user defined functions, flow of execution, scope

of a variable and standard libraries in Python programming.

2.1 Python Functions

A function is a block of code that performs a specific task. Dividing a complex

problem into smaller chunks makes our program easy to understand and reuse.

Suppose we need to create a program to make a circle and color it. We can

create two functions to solve this problem:

1. function to create a circle

2. function to color the shape

AI Assistant, Grade X Page 39 / 190

Creating a Function

Example 2.1: Let's create a function greet() to greet others.

def greet():

 print('Hello World!')

The different parts of this function are as below:

Here, a function greet() is created to print Hello World!

Note: When writing a function, it is important to understand indentation.
Indentation are the spaces at the start of a code line.

In the above code, the print() statement is intended to show it's part of the

function body, distinguishing the function's definition from its body.

Calling a Function

In the above example, a function is declared with the name greet().

def greet():

 print('Hello World!')

The above code when executed will not produce any output. The function is
created for executing code inside it. The function has to be called for its
execution. The function can be called by just mentioning the function name with
opening and closing parenthesis as below.

greet()

Example 2.2: Let us demonstrate to call a function with the following code

def greet():
 print('Hello World!')
call the function
greet()
print('Outside function')

In the above example, a function named greet() is created. The flow of control

is depicted as below:

AI Assistant, Grade X Page 40 / 190

When the function greet() is called, the program's control transfers to the function

definition. The code inside the function is executed. The control of the program jumps

to the next statement after the function call.

Python Function Arguments

Arguments are inputs given to the function. The value of the argument can be

passed or mentioned itself in the function.

It is possible to pass different arguments in each call, making the function re-
usable and dynamic.

In the following example, the value 'Diya' is passed to the argument of the

greet() function to display the output as 'Hello Diya'

This function is again called with another argument as ‘Deepak’ to print Hello
Deepak as shown in the below code.

def greet(name):

 print("Hello", name)

pass argument
greet("Diya")

greet("Deepak”)

Example 2.3: Consider another example of a function to add two numbers.

AI Assistant, Grade X Page 41 / 190

function with two arguments

def add_numbers(num1, num2):

 sum = num1 + num2

 print("Sum : ", sum)

functioin call with two values

add_numbers(4,5)

In the above example, a function named add_numbers() is created with

arguments: num1 and num2.

Fig. Python Function with Arguments

Parameters and Arguments

Parameters : Parameters are the variables listed inside the parentheses in the

function definition. They act like placeholders for the data the function can

accept when we call them.

Think of parameters as the blueprint that outlines what kind of information the

function expects to receive.

def print_age(age): # age is a parameter

AI Assistant, Grade X Page 42 / 190

 print(age)

In this example, the print_age() function takes age as its input. However, at

this stage, the actual value is not specified.

The age parameter is just a placeholder waiting for a specific value to be

provided when the function is called.

Arguments : Arguments are the actual values that are passed to the function

when it is called. Arguments replace the parameters when the function

executes.

print_age(21) # 21 is an argument

Here, during the function call, the argument 21 is passed to the function.

The return Statement

A value of the function is returned using the return statement as illustrated in

Example 2.4.

Example 2.3
function definition
def find_square(num):
 result = num * num
 return result

function call
square = find_square(3)
print('Square:', square)
square = find_square(5)
print('Square:', square)

In Example 2.4, a function named find_square() is created. The function

accepts a number and returns the square of the number.

Note: The return statement also denotes the end of function. Any code after

return is not executed.

The pass Statement

AI Assistant, Grade X Page 43 / 190

The pass statement serves as a placeholder for future code, preventing errors

from empty code blocks. It's typically used where code is planned but has yet to

be written.

def future_function():

 pass

this will execute without any action or error
future_function()

Python Library Functions

Python provides some built-in functions that can be directly used in python

programs. In such cases we don't need to create the function, but just need to

call them.

Some Python library functions are:

print() : prints the string inside the quotation marks

sqrt() : returns the square root of a number

pow() : returns the power of a number

These library functions are defined inside the module, and to use them, you

must include the math module inside our program. For example, sqrt() is

defined inside the math module.

Example 2.5 illustrate the use of Python library function.

import math
sqrt computes the square root
square_root = math.sqrt(4)

print("Square Root of 4 is",square_root)

pow() comptes the power
power = pow(2, 3)
print("2 to the power 3 is",power)

AI Assistant, Grade X Page 44 / 190

User Defined Function Vs Standard Library Functions

In Python, functions are divided into two categories: user-defined functions and

standard library functions. These two differ in several ways:

User-Defined Functions – These are the functions created by the user. They're

designed for specific tasks to be performed as per our requirement. They're not part of

Python's standard toolbox. A user. The user has freedom to tailor them exactly to their

needs, adding a personal touch to code.

Standard Library Functions – These are Python's pre-packaged gifts. They come built-

in with Python, ready to use. These functions cover a wide range of common tasks such

as mathematics, file operations, working with strings, etc. These are tested by the

Python community, ensuring efficiency and reliability.

2.2 User defined Functions

There are large number of functions already available in Python under the

standard library. We can directly call these functions in our program without

defining them. Functions that readily come with Python are called built-in

functions. If we use functions written by others in the form of library, it can be

termed as library functions.

However, in addition to the standard library functions, we can define our own

functions while writing the program. Such functions are called user defined

functions.

Functions that we define ourselves to do certain specific task are referred as

user-defined functions.

Advantages of user-defined functions

1. User-defined functions help to decompose a large program into small

segments which makes program easy to understand, maintain and debug.

AI Assistant, Grade X Page 45 / 190

2. If repeated code occurs in a program. Function can be used to include

those codes and execute when needed by calling that function.

3. Programmars working on large project can divide the workload by making

different functions.

Creating User Defined Function

A function definition begins with def (short for define). The syntax for creating a

user defined function is as below.

Function Header

def <Function name> ([parameter1, parameter2, …]) :

Function Body

set of instructions to be executed

[return <value>]

The items enclosed in "[]" are called parameters and they are optional. Hence, a

function may or may not have parameters. Also, a function may or may not

return a value. Function header always ends with a colon (:). Function names

should be unique. Rules for naming identifiers also apply for function naming.

The statements outside the function indentation are not considered as part of

the function.

Example 2.6 : Consider the problem of finding a maximum of two numbers a

and b. Let us take a simple Python program for this problem.

Find Maximum of two numbers
Without using function
a=10
b=20
if a>b:
 max=a
else:
 max=b
 print("Maximum = ",max)

AI Assistant, Grade X Page 46 / 190

In the above program, a built-in function print () is used to print the value.

Another approach to solve the above problem is to divide the program into

different blocks of code and keep the block of code in a function which is used to

do some specific task. The process of dividing a computer program into separate

independent blocks of code or separate sub-problems with different names and

specific functionalities is known as modular programming.

Let us solve the above problem using function. The above program is rewritten

using user defined functions as shown below.

Example 2.7 :

Find Maximum of two numbers
By using function
def max(x,y):
 if x>y:
 return x
 else:
 return y

print("Maximum using function=",max(a,b))

Comparing the above code to find the maximum by using function with that of

without using function, it can be seen that the program using function looks

AI Assistant, Grade X Page 47 / 190

more organized and easier to read. A user defined function max () used to find

the maximum of two numbers. The print () function is a built-in function of

Python which is used to print the value on the console. Thus, we have two types

of functions in Python – User defined functions and Built-in functions.

Example 2.8: Following program illustrates how to write a user defined

function to add two numbers and display their sum as a result.

User defined function to add 2 nos. and display sum
def add():
 num1=int(input("Enter first no. : "))
 num2=int(input("Enter second no. : "))
 sum=num1+num2
 print("The sum of",num1,"and",num2,"is :",sum)

function call
add()

In the above program, add() is a user-defined function that takes two integer

numbers a s input, calculates the sum of two numbers and displays it. To

execute this function, it is required to call this function by using function name

(). The function add() is being called in the last line of code

The def is the keyword used to define a function and the function name is

written following the def keyword. After execution, it creates a new function

object and assigns it a new name. It can be used inside any control structures

like if else. Example 2.8 illustrate this.

Using function inside the if...else
def test():
 a=int(input("Enter a value : "))

AI Assistant, Grade X Page 48 / 190

 if a>0:
 print("Positive")
 else:
 print("Negative")

Function call
test()

Assignment 2.1

1. Write a program to find the maximum of three numbers using a user-

defined function.

2. Write a program to Find Factorial of Number using a user-defined function.

3. Write a program to print the sum of digits of a user entered number using a

user-defined function.

4. Write a program to print the day name by reading the day number from the

user using a user-defined function.

Example 2.9 : Let's look at an example.

def greet(name, message="Hello"):
 print(message, name)

calling function with both arguments
greet("Students", "Good Morning")

calling function with only one argument
greet("Diya")

AI Assistant, Grade X Page 49 / 190

2.3 Python Function Arguments

An argument is a value that is accepted by a function. In the above example, the

values are accepted from the user within the function itself, but it is also

possible for a user defined function to receive values when it is called. An

argument is a value passed to the function during the function call which is

received in the corresponding parameter defined in the function header.

Example 2.10: Write a python code to add two numbers using a function with

arguments.

Sum of 2 numbers by using function
with specified arguments
def add_numbers(a, b):
 sum = a + b
 print('Sum using function with arguments',a,b,'=',sum)

Function call with arguments 4,5
add_numbers(4,5)

AI Assistant, Grade X Page 50 / 190

In the above example, the function add_numbers() takes two parameters: a and

b. The function, add_numbers(4, 5) specifies that parameters a and b will get

values 4 and 5 respectively. The function, add_numbers(4, 5) specifies that

parameters a and b will get values -4 and 5 respectively.

Function Argument with Default Values

Python allows assigning a default value to the parameter. Default arguments are

used when no explicit values are passed to these parameters during a function

call. The = operator is used to provide default values.

Example 2.11: For example, the above code can be modified as below.

Sum of 2 nos. by using function
argument with default values
def add_numbers(a = 7, b = 8):
 sum = a + b
 print('Sum = ',sum)

function call with two arguments
add_numbers(2, 3)

function call with one argument
add_numbers(a = 2)

function call with no arguments
add_numbers()

AI Assistant, Grade X Page 51 / 190

In this example the default values 7 and 8 are provided for parameters a and b

respectively. Let us see how this program works for three conditions

1. add_number(2, 3) : Both values are passed during the function call. Hence,

these values are used instead of the default values.

2. add_number(2) : Only one value is passed during the function call. So,

according to the positional argument 2 is assigned to argument a, and the

default value is used for parameter b.

3. add_number() : No value is passed during the function call. Hence, default

value is used for both parameters a and b.

Example 2.12: Consider another example to convert the denominator of the division

into proper fraction using a user defined function.

Program to convert denominator of division into
proper fraction using user defined funtion
def mixedFraction(num, deno = 1):
 remainder = num % deno
 if remainder != 0:
 quotient = int(num/deno)
 print("The mixed fraction =
",quotient,'(',remainder,'/',deno,')')
 else:
 print("It evaluates to whole number")
Function ends
num = int(input("Enter the numerator : "))
deno = int(input("Enter the denominator : "))
print("The number is :",num, '/',deno)
if num > deno: # Check for proper fraction
 mixedFraction(num,deno) # Function call
else:
 print("It is a proper fraction")

AI Assistant, Grade X Page 52 / 190

When you run the program for various inputs, the output is as below.

In the above program, the denominator entered is 3, which is passed to the

parameter "deno" so the default value of the argument deno is overwritten. Let

us consider the following function call: mixedFraction(9). Here, num will be

assigned 25 and deno will use the default value 1.

A function argument can also be an expression, such as

mixedFraction(num+5, deno+5)

In such a case, the argument is evaluated before calling the function so that a

valid value can be assigned to the parameter. The parameters should be in the

same order as that of the arguments.

AI Assistant, Grade X Page 53 / 190

The default parameters must be the trailing parameters in the function header

that means if any parameter is having default value then all the other

parameters to its right must also have default values. For example,

def mixedFraction(num,deno = 1)

def mixedFraction(num = 2,deno = 1)

Let us consider few more function definition headers:

def calcInterest(principal = 1000, rate, time = 5):

Above header is incorrect as default must be the last #parameter. So, the correct

function header should be as follows.

def calcInterest(rate, principal = 1000, time = 5):

One more point is important to note that a function header cannot have

expressions. Therefore, following function headers will give error:

def mixedFraction(num+5,deno):

def mixedFraction(num+5,deno+5):

String as Parameters

In the above program only numeric types of arguments are passed while calling

a function. However, it may also require passing string values as an argument,

as illustrated in Example 2.13.

Example 2.13:

def display_info(first_name, last_name):
 print('First Name:', first_name)
 print('Last Name:', last_name)

display_info(last_name = 'Kumar', first_name = 'Kiran')
display_info(first_name = 'Kumar', last_name = 'Shanu')

AI Assistant, Grade X Page 54 / 190

Here, the names to arguments are assigned during the function call. Hence,

first_name in the function call is assigned to first_name in the function

definition. Similarly, last_name in the function call is assigned to last_name in

the function definition. In such cases, the position of arguments doesn't matter.

Example 2.14: Consider another example to display the full name by taking the

input first name and last name using concatenation of two strings.

Program to concatenate two strings parameters
Function Start
def full_name(first_name, last_name):
 full_name = first_name + last_name
 print('Full Name : ',full_name)
Function End
first_name = input('Enter First Name : ')
Enter First Name : Kumar
last_name = input('Enter Last Name : ')
Enter Last Name : Shanu
Function Call
full_name(first_name, last_name)

Python Function with Arbitrary Arguments

Sometimes, the number of arguments that will be passed into a function may

not be known in advance. To handle such situations, arbitrary arguments can

be used in Python. Arbitrary arguments allow us to pass a varying number of

values during a function call. The asterisk (*) can be used before the parameter

name to denote such an argument.

AI Assistant, Grade X Page 55 / 190

Example 2.15:

program to find sum of multiple numbers
def find_sum(*numbers):
 result = 0
 for num in numbers:
 result = result + num
 print("Sum = ", result)

function call with 2 arguments
find_sum(1, 2)
Sum = 3
function call with 3 arguments
find_sum(3, 4, 5)
Sum = 12
function call with 4 arguments
find_sum(6, 7, 8, 9)
Sum = 30

In Example 2.15, the function find_sum() accepts arbitrary arguments. Hence

it is possible to to call the same function with different arguments. After getting

multiple values, numbers behave as an array so we are able to use the for loop to

access each value.

2.4 Scope of a variable

A variable defined inside a function cannot be accessed outside it. Every variable

has a well-defined accessibility. The part of the program where a variable is

accessible can be defined as the scope of that variable.

AI Assistant, Grade X Page 56 / 190

In Python, we can declare variables in three different scopes: local scope, global,

and nonlocal scope.

A variable scope specifies the region where we can access a variable. For

example,

def add_numbers():

 sum = 5 + 4

Here, the sum variable is created inside the function, so it can only be accessed

within it (local scope). This type of variable is called a local variable.

Based on the scope, Python variables are classified into three types:

1. Local Variables

2. Global Variables

3. Nonlocal Variables

Local Variables

When we declare variables inside a function, these variables will have a local

scope (within the function). It can be accessed only in the function or a block where it

is defined. It exists only till the function executes.

These types of variables are called local variables. For example,

Example 2.16:

def greet():

 # local variable
 message = 'Hello'

 print('Local', message)

greet()

try to access message variable
outside greet() function
print(message)

Output

Local Hello

NameError: name 'message' is not defined

Here, the message variable is local to the greet() function, so it can only be

accessed within the function.

That's why we get an error when we try to access it outside the greet() function.

AI Assistant, Grade X Page 57 / 190

To fix this issue, we can make the variable named message global.

Global Variables

In Python, a variable declared outside of the function or in global scope is

known as a global variable. This means that a global variable can be accessed

inside or outside of the function. Any change made to the global variable will impact

all the functions in the program where that variable can be accessed.

Example 2.17: illustrates how a global variable is created in Python.

declare global variable
message = 'Hello'

def greet():
 # declare local variable
 print('Local', message)

greet()
print('Global', message)

Output

Local Hello
Global Hello

This time we can access the message variable from outside of the greet()

function. This is because we have created the message variable as the global

variable.

declare global variable

message = 'Hello'

AI Assistant, Grade X Page 58 / 190

Now, message will be accessible from any scope (region) of the program.

Nonlocal Variables

In Python, the nonlocal keyword is used within nested functions to indicate that

a variable is not local to the inner function, but rather belongs to an enclosing

function’s scope.

This allows you to modify a variable from the outer function within the nested

function, while still keeping it distinct from global variables.

Example 2.18:

outside function
def outer():
 message = 'local'

 # nested function
 def inner():

 # declare nonlocal variable
 nonlocal message

 message = 'nonlocal'
 print("inner:", message)

 inner()
 print("outer:", message)

outer()

Output
inner: nonlocal
outer: nonlocal

In the above example, there is a nested inner() function. The inner() function is

defined in the scope of another function outer().

We have used the nonlocal keyword to modify the message variable from the

outer function within the nested function.

Note : If we change the value of a nonlocal variable, the changes appear in the

local variable.

AI Assistant, Grade X Page 59 / 190

Global Keyword

In Python, the global keyword allows to modify the variable outside of the

current scope. It is used to create a global variable and make changes to the

variable in a local context.

Access and Modify Python Global Variable

First let's try to access a global variable from the inside of a function,

Example 2.19:

c = 1 # global variable
def add():
 print(c)
add()

Output: 1

Here, we can see that a global variable is accessed from the inside of a function.

However, if we try to modify the global variable from inside a function as:

Example 2.20:

global variable
c = 1
def add():
 # increment c by 2
 c = c + 2
 print(c)
add()

Output
UnboundLocalError: local variable 'c' referenced before assignment

AI Assistant, Grade X Page 60 / 190

This is because we can only access the global variable but cannot modify it from

inside the function.

The solution for this is to use the global keyword.

Example 2.21 illustrates, changing global variable from inside a function using
global.

Example 2.21:

In the above program’s output, Global variable num is accessed as the

ambiguity is resolved by prefixing the keyword global to it.

Rules of global Keyword

The basic rules for global keyword in Python are:

 When we create a variable inside a function, it is local by default.

 When we define a variable outside of a function, it is global by default. You

don't have to use the global keyword.

 We use the global keyword to modify (write to) a global variable inside a

function.

 Use of the global keyword outside a function has no effect.

AI Assistant, Grade X Page 61 / 190

2.5 Recursion

Recursion is the process of defining something in terms of itself. A physical

world example would be to place two parallel mirrors facing each other. Any

object in between them would be reflected recursively.

Recursive Function

In Python, we know that a function can call other functions. It is even possible

for the function to call itself. These types of construct are termed as recursive

functions. The following image shows the working of a recursive function called

recurse.

Following is an example of a recursive function to find the factorial of an integer.

Factorial of a number is the product of all the integers from 1 to that number.

For example, the factorial of 6 (denoted as 6!) is 1*2*3*4*5*6 = 720.

Example 2.22: Example of a recursive function

def factorial(x):
This is a recursive function to
find the factorial of an integer
 if x == 1:
 return 1
 else:
 return (x * factorial(x-1))
num = 3
print("The factorial of", num, "is", factorial(num))

Output

The factorial of 3 is 6

AI Assistant, Grade X Page 62 / 190

In the above example, factorial() is a recursive function as it calls itself.

When we call this function with a positive integer, it will recursively call itself by

decreasing the number.

Each function multiplies the number with the factorial of the number below it

until it is equal to one. This recursive call can be explained in the following

steps.

factorial(3) # 1st call with 3

3 * factorial(2) # 2nd call with 2
3 * 2 * factorial(1) # 3rd call with 1
3 * 2 * 1 # return from 3rd call as number=1
3 * 2 # return from 2nd call
6 # return from 1st call

Let's look at an image that shows a step-by-step process of what is going on:

Our recursion ends when the number reduces to 1. This is called the base

condition.

Every recursive function must have a base condition that stops the recursion or

else the function calls itself infinitely.

The Python interpreter limits the depths of recursion to help avoid infinite

recursions, resulting in stack overflows.

By default, the maximum depth of recursion is 1000. If the limit is crossed, it

results in RecursionError. Let's look at one such condition.

AI Assistant, Grade X Page 63 / 190

AI Assistant, Grade X Page 64 / 190

Advantages of Recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems using

recursion.

3. Sequence generation is easier with recursion than using some nested

iteration.

Disadvantages of Recursion

1. Sometimes the logic behind recursion is hard to follow through.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory

and time.

3. Recursive functions are hard to debug.

Example 2.23: Write a program to calculate the factorial of a number using

recursion.

Python program to find the factorial of a number provided by the
user.

To take input from the user
num = int(input("Enter a number: "))

factorial = 1

check if the number is negative, positive or zero
if num < 0:
 print("Sorry, factorial does not exist for negative numbers")
elif num == 0:
 print("The factorial of 0 is 1")
else:
 for i in range(1,num + 1):
 factorial = factorial*i
 print("The factorial of",num,"is",factorial)

AI Assistant, Grade X Page 65 / 190

You can run this program for different input as shown below.

CHECK YOUR PROGRESS

A. Multiple Choice Questions

1. A named group of instructions that accomplish a specific task when it is

invoked is called a (a) string (b) control (c) tuple (d) Function

2. Which keyword is used for function? (a) fun (b) define (c) def (d) function

3. What are the two main types of functions? (a) Custom function (b) Built-in

function & User defined function (c) User function (d) System function

AI Assistant, Grade X Page 66 / 190

4. Which of the following is the use of id () function in Python? (a) Id returns

the identity of the object (b) Every object doesn’t have a unique id (c) All of

the mentioned (d) None of the mentioned

5. Which of the following refers to mathematical function? (a) sqrt (b)

rhombus (c) add (d) minus

6. Which of the following is not true for Recursive functions in Python. (a)

Recursive functions make the code look clean and elegant (b) A complex

task can be broken down into simpler sub-problems using recursion (c)

Recursive functions take up a lot of memory and time. (d) Recursive

functions are easy to debug. (d)

B. State whether True or False

1. Use of function is one of the means to achieve modularity and reusability.

2. Function header always ends with a semicolon (;).

3. Lambda function contains return statements.

4. Lambda is an anonymous function in Python.

5. Module is a grouping of functions.

6. Once we import a module, we can directly use all the functions of that

module.

7. To use the function when imported using "from statement" we do not need

to precede it with the module name.

8. It is not possible to create your own function, besides the available

modules in the Python standard library.

9. randrage () is a function of a random module.

10. fmod () is a function of the statistics module.

C. Fill in the Blanks

1. The process of dividing a computer program into separate independent

blocks of code or separate sub-problems with different names and specific

functionalities is known as _________ programming.

2. A function defined to achieve some tasks as per the programmer's

requirement is called a _________ function.

3. An _________ is a value passed to the function during the function call

which is received in the corresponding parameter defined in the function

header.

4. The _________ statement returns the values from the function.

5.

AI Assistant, Grade X Page 67 / 190

6. Sequence generation is easier with ____________ than using some nested

iteration (recursion)

D. Programming Questions

1. Identify the errors if any in the following code.

(a) def create (text, freq):

for i in range (1, freq):

print text

create (5) #function call

(b) from math import sqrt,ceil

def calc ():

print cos (0)

calc () #function call

(c) mynum = 9 def add9():

mynum = mynum + 9

print mynum

add9() #function call

(d) def findValue(val) = 1.1, val2, val3):

final = (val2 + val3)/ vall

print(final)

findvalue () #function call

(e) def greet ():

return ("Good morning")

greet () = message #function call

2. Write a program to check the divisibility of a number by 7 that is passed

as a parameter to the user defined function.

3. Write a program that uses a user defined function that accepts name and

gender (as M for Male, F for Female) and prefixes Mr./Ms. on the basis of

the gender.

4. Write a Program that uses two user defined functions to convert

temperatures to and from Celsius, Fahrenheit and Fahrenheit to Celsius.

5. Write a program that has a user defined function to accept the coefficients

of a quadratic equation in variables and calculates its determinant. For

example: if the coefficients are stored in the variables a, b, c then calculate

the determinant as b2-4ac. Write the appropriate condition to check

determinants on positive, zero and negative and output appropriate

results.

6. ABC School has allotted unique token IDs from (1 to 600) to all the

parents for facilitating a lucky draw on the day of their annual day

AI Assistant, Grade X Page 68 / 190

function. The winner would receive a special prize. Write a program using

Python that helps to automate the task. (Hint: use random module)

7. Write a program that implements a user defined function that accepts

Principal Amount, Rate, Time, Number of Times the interest is

compounded to calculate and displays compound interest. (Hint: CI =

P(1+ R
N

)NT

8. Write a program that has a user defined function to accept 2 numbers as

parameters, if number 1 is less than number 2 then numbers are

swapped and returned, i.e., number 2 is returned in place of number 1

and number 1 is reformed in place of number 2, otherwise the same order

is returned.

9. Write a program that contains user defined functions to calculate area,

perimeter or surface area whichever is applicable for various shapes like

square, rectangle, triangle, circle and cylinder. The user defined functions

should accept the values for calculation as parameters and the calculated

value should be returned. Import the module and use the appropriate

functions.

10. Write a program that creates a GK quiz consisting of any five questions of

your choice. The questions should be displayed randomly. Create a user

defined function score () to calculate the score of the quiz and another

user defined function remark (score value) that accepts the final score to

display remarks as follows:

Appendix 1

Table 12.2 Commonly used functions in math module

Function Syntax Arguments Returns Example Output
math.ceil(x) x may be an

integer or floating-
point number

ceiling value
of x

>>> math.ceil(-9.7)
-9
>>> math.ceil (9.7)
10
>>> math.ceil(9) 9

AI Assistant, Grade X Page 69 / 190

Marks Remarks
5 Outstanding
4 Excellent
3 Good
2 Read more to score more
1 Needs to take interest
0 General knowledge will always help you. Take it

seriously.

math.floor(x) x may be an
integer or floating-
point number

floor value of
x

>>> math.floor(-4.5)
-5
>>> math.floor(4.5)
4
>>> math.floor(4)
4

math.fabs(x) x may be an
integer or floating-
point number

absolute
value of x

>>> math.fabs(6.7) 6.7
>>> math.fabs(-6.7)
6.7
>>> math.fabs(-4) 4.0

math.factorial(x) x is a positive
integer

factorial of x >>> math.factorial(5)
120

math.fmod(x,y) x and y may be an
integer or floating-
point number

x % y with
sign of x

>>> math.fmod(4,4.9)
4.0
>>>
math.fmod(4.9,4.9)
0.0
>>> math.fmod(-
4.9,2.5)
-2.4
>>> math.fmod(4.9,-
4.9)
0.0

math.gcd(x,y) x, y are positive
integers

gcd (greatest
common
divisor) of x
and y

>>> math.gcd(10,2) 2

math.pow(x,y) x, y may be an
integer or floating-
point number

x
y

(x raised

to the power
y)

>>> math.pow(3,2)
9.0
>>> math.pow(4,2.5)
32.0
>>> math.pow(6.5,2)
42.25
>>> math.pow(5.5,3.2)
233.97

math.sqrt(x) x may be a
positive integer or
floating-point
number

square root
of x

>>> math.sqrt(144)
12.0
>>> math.sqrt(.64)
0.8

math.sin(x) x may be an
integer or floating-
point number in
radians

sine of x in
radians

>>> math.sin(0)
0
>>> math.sin(6)
-0.279

AI Assistant, Grade X Page 70 / 190

Table 12.3 Commonly used functions in random module

Function
Syntax

Argument Return Example Output

random.
random()

No argument (void) Random Real
Number (float)
in the range
0.0 to 1.0

>>> random. random()
0.65333522

random.
randrange(x
,y)

x and y are positive
integers signifying
the start and stop
value

Random integer
between x and y

>>>
random.randrange(2,
7) 2

random.
randrage(y)

y is a positive integer
signifying the stop
value

Random integer
between 0 and y

>>>
random.randrange(5)
4

Table 12.4 Some of the function available through statistics module

Function
Syntax

Argument Return Example Output

statistics.mea
n(x)

x is a numeric
sequence

arithmetic
mean

>>> statistics.
mean([11,24,32,45,51])
32.6

statistics.medi
an(x)

x is a numeric
sequence

median
(middle
value) of x

>>>statistics.
median([11,24,32,45,51])
32

statistics.mod
e(x)

x is a sequence mode (the
most
repeated
value)

>>> statistics.
mode([11,24,11,45,11]) 11
>>> statistics.
mode(("red","blue","red"))
'red'

AI Assistant, Grade X Page 71 / 190

Module 2. Data Science
Data science is an evolving field which combines math, computer science, and

domain expertise to tackle real-world challenges in a variety of fields. The study

of data helps us derive useful insight for business decision making. Data

Science is all about using tools, techniques, and creativity to uncover insights

hidden within data. Data science is about using data to gain knowledge and

make better decisions by collecting, cleaning, analyzing, and interpreting

information to uncover patterns and insights. Data Science processes the raw

data and solve business problems and even make prediction about the future

trend or requirement.

Data science is about using data to gain knowledge and make better decisions

by collecting, cleaning, analyzing, and interpreting information to uncover

patterns and insights. Data science empowers the industries to make smarter,

faster, and more informed decisions.

Python is a programming language widely used by Data Scientists. Python has

in-built mathematical libraries and functions, making it easier to calculate

mathematical problems and to perform data analysis. Numpy is a mathematical

library in Python with powerful N-dimensional array object, linear algebra,

Fourier transform, etc.

In this unit we will discuss the advanced tool NumPy that is commonly used for

data science. This tool is commonly used for numerical analysis of large amount

of data. Various mathematical and logical operations can be performed by using

NumPy.

AI Assistant, Grade X Page 72 / 190

Session 1. Introduction to NumPy

In Python, the lists data structure serves the purpose of arrays, but they are

slow to process. NumPy aims to provide an array object that is much faster than

traditional Python lists. NumPy arrays are stored at one continuous place in

memory unlike lists, so processes can access and manipulate them very

efficiently. The elements of a NumPy array must all be of the same type, whereas

the elements of a Python list can be of completely different types.

NumPy stands for Numerical Python. NumPy is the fundamental package for

scientific computing in Python. It is a Python library that provides a

multidimensional array object. It provides functions for fast mathematical

computation on arrays and matrices. NumPy objects are primarily used to

create arrays or matrices that can be applied to Deep Learning or Machine

Learning models. Pandas is used for creating heterogenous, two-dimensional

data objects, NumPy makes N-dimensional homogeneous objects. Pandas

functions return results in the form of NumPy array.

Why NumPy?

There are several reasons to use NumPy for data analysis as given below.

1. In NumPy we can create arrays for large amounts of data.

2. Various basic linear algebra operations, statistical operation, Fourier

transform, sorting, searching, shape manipulation and random simulation

operations can be performed by using NumPy.

3. NumPy package is the ndarray object. It means we can have n

dimensional arrays of homogeneous data elements.

4. NumPy arrays have a fixed size. When the size is changed, then it will

delete the original and a new array is created.

5. Consider a simple example of multiplying two arrays. In python we can

write a code for the multiplication as given below.

c = []

for i in range(len(a)):

 c.append(a[i]*b[i])

The above code when executed will produce the correct result, but will

require time when both the arrays a and b will contain millions of

numbers. The loop in python is inefficient when compared with the C

programming language. When we use NumPy then the above

multiplication can be achieved simply by writing c=a*b

Observe that NumPy gives the advantage of efficient programming.

AI Assistant, Grade X Page 73 / 190

6. NumPy is very fast because its code is more concise and easier to read. It

contains fewer lines of codes therefore there are fewer bugs.

7. NumPy can be easily integrated with other scientific libraries of Python

such as Pandas, Matplotlib, SciPy, and TensorFlow.

Installation of NumPy

To use NumPy, it should be installed. The best way to install NumPy on your

system is by using a pre-build package for your operating system. Refer to the

link provided below for installation of NumPy.

Installation of NumPy in Windows

NumPy can be installed on Windows by using the Anaconda toolbox or by using

pip. If you don’t have anaconda installed then install anaconda..

Installation of anaconda in Windows

To install anaconda in Windows computer, first download anaconda from the

link https://www.anaconda.com/download/success

1. Locate the executable file of anaconda and download it for installation.

2. Click on the executable file Anaconda3-2024.10-1-Windows-x86_64.exe that is

already downloaded on your computer system.

3. Click on this file and follow the simple instructions appearing on your screen.

4. Observe that the anaconda toolbox will get installed on C drive.

5. Now open the anaconda navigator as shown below.

AI Assistant, Grade X Page 74 / 190

Fig. 1.1 : Anaconda navigator

From this navigator select the Anaconda prompt. Click on the launch button of

Anaconda prompt as shown in Figure below.

Fig. 1.2 : Anaconda prompt

On clicking the launch button, the anaconda prompt screen appears as shown

in Figure 1.2.

On the prompt type

Python

Observe that the python version as below

Python 3.12.7 packaged by Anaconda……

It means that Python is already installed by anaconda and now the python

prompt >>> appears on the screen.

Now to check whether the NumPy is already installed on Python, type the

command on the python prompt.

AI Assistant, Grade X Page 75 / 190

>>> import numpy

If no error message is displayed then it means that the anaconda toolbox has

already installed the NumPy tool and it is ready for use.

Now you can execute NumPy code on this prompt.

Whenever you want to exit anaconda prompt type Ctrl+z and press enter

>>> ^z

Now you can close your anaconda prompt.

Anaconda navigator can be closed by clicking on the close (x) window of the

navigator.

Similarly, to check whether the Panda is already installed on Python, type the

command on the python prompt.

>>> import panda

If no error message is displayed then it means that the anaconda toolbox has

already installed the Panda tool and it is ready for use.

Installation of NumPy in Linux

Step 1. It is necessary to install Python before installing NumPy. If it is not

installed, then first install Python by using the following link.

Link to install python

Step 2. To install the NumPy in Ubuntu Linux first open the terminal and check

whether Python is installed or not on your computer by using the following

command.

deepak@ds:~$ python3 --version

Python 3.12.7

deepak@ds:~$

This shows that Python 3.12.7 version is installed on your computer.

Step 3. Now check if the pip is installed or not by issuing the command pip on

the $ prompt.

deepak@ds:~$ pip

You will get something at the last $ prompt. This shows that pip is installed.

Step 4. After that, write python3 on $ prompt, and the python console will open.

Then issue the command

>>> import numpy as nm

AI Assistant, Grade X Page 76 / 190

Step 5. If numpy is not installed then it will show the error

ModuleNotFoundError: No module named ‘numpy’. This shows that numpy is

not installed. Then clear the terminal and proceed to install numpy.

Step 6. Now to install the numpy issue the following command and password.

deepak@ds:~$ sudo apt install python3-numpy

[sudo] password for deepak:

Step 7. It will download as well as install the numpy as shown in the following

screenshot. Make sure that the internet must be connected during this process.

When you receive the $ prompt, numpy is installed.

Step 8. You can check whether numpy is installed or not with the following.

deepak@ds:~$ python3

Python 3.12.3 (main, Nov 6 2024, 18:32:19) [GCC 13.2.0] on linux

AI Assistant, Grade X Page 77 / 190

Type "help", "In Python, the lists data structure serve the purpose of arrays, but

they are slow to process. NumPy aims to provide an array object that is much

faster than traditional Python lists. NumPy arrays are stored at one continuous

place in memory unlike lists, so processes can access and manipulate them very

efficiently. The elements of a NumPy array must all be of the same type, whereas

the elements of a Python list can be of completely different types.

NumPy stands for Numerical Python is a Python library used for working with

arrays. It provides functions for fast mathematical computation on arrays and

matrices. NumPy objects are primarily used to create arrays or matrices that

can be applied to Deep Learning or Machine Learning models. Pandas is used

for creating heterogenous, two-dimensional data objects, NumPy makes N-

dimensional homogeneous objects. Pandas functions return results in the form

of NumPy array. copyright", "credits" or "license" for more information.

>>> import numpy as nm

>>> This shows that numpy is installed and you can do coding related to

numpy.

Installation of anaconda in Ubuntu Linux

https://docs.vultr.com/how-to-install-anaconda-on-ubuntu-24-04#install-

anaconda-on-ubuntu-2404

Anaconda is not available in the default Ubuntu package repositories. Follow the

steps below to install the package by downloading a script from the Anaconda

repository.

Step 1. Visit the Anaconda archives directory to check and download the latest

installation script.

$ wget https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-
x86_64.sh

Step 2. Run the script using Bash.

$ bash Anaconda3-2024.10-1-Linux-x86_64.sh

Press Enter when prompted to review the Anaconda license agreement.

Welcome to Anaconda3 2024.10-1

In order to continue the installation process, please review the
license

agreement.

Please, press ENTER to continue

>>>

Step 3. Press Space to browse through the license agreement.

AI Assistant, Grade X Page 78 / 190

https://repo.anaconda.com/archive/

Step 4. Enter yes and press Enter to accept the license agreement.

Version 4.0 | Last Modified: March 31, 2024 | ANACONDA TOS

Do you accept the license terms? [yes|no]

>>> yes

Step 5. Verify the default installation path, typically anaconda3 in your user

home directory and press Enter to install Anaconda.

Anaconda3 will now be installed into this location:

/vultr/anaconda3

 - Press ENTER to confirm the location

 - Press CTRL-C to abort the installation

 - Or specify a different location below

[/vultr/anaconda3] >>>

Step 6. Enter yes and press Enter to update your shell environment and

initialize Conda.

Do you wish to update your shell profile to automatically
initialize conda?

This will activate conda on startup and change the command prompt
when activated.

If you'd prefer that conda's base environment not be activated on
startup,

 run the following command when conda is activated:

conda config --set auto_activate_base false

You can undo this by running `conda init --reverse $SHELL`? [yes|
no]

[no] >>> yes

Step 7. Reload the .bashrc shell configuration to apply the Anaconda changes

to your environment.

$ source ~/.bashrc

4. View the installed Conda version.

$ conda –version

Output:

conda 24.5.0

Step 8. List all packages in the default Conda environment.

AI Assistant, Grade X Page 79 / 190

$ conda list

Output:

Name Version Build Channel

_anaconda_depends 2024.06 py312_mkl_2

_libgcc_mutex 0.1 main

_openmp_mutex 5.1 1_gnu

abseil-cpp 20211102.0 hd4dd3e8_0

aiobotocore 2.12.3 py312h06a4308_0

aiohttp 3.9.5 py312h5eee18b_0

aioitertools 0.7.1 pyhd3eb1b0_0

aiosignal 1.2.0 pyhd3eb1b0_0

alabaster 0.7.16 py312h06a4308_0

altair 5.0.1 py312h06a4308_0

anaconda-anon-usage 0.4.4 py312hfc0e8ea_100

anaconda-catalogs 0.2.0 py312h06a4308_1

anaconda-client 1.12.3 py312h06a4308_0

anaconda-cloud-auth 0.5.1 py312h06a4308_0

anaconda-navigator 2.6.0 py312h06a4308_0

anaconda-project 0.11.1 py312h06a4308_0

annotated-types 0.6.0 py312h06a4308_0

.............................

Manage Conda Environments

A Conda environment contains specific dependencies, packages, and Python versions that match
your project needs. The isolated environment is different from your global system environment.
Follow the steps below to create and manage Conda environments.

1. Create a new myenv Conda environment with a specific Python version, such

as 3.8.

$ conda create --name myenv python=3.8

Enter Y when prompted to install all necessary dependency packages in the new

environment.

2. Activate the new Conda environment

$ conda activate myenv

Verify that your shell prompt changes to the new environment.

(myenv) vultr@Server:~$

3. List all outdated packages in your environment.

$ conda update –all

Enter Y when prompted to install new packages.

AI Assistant, Grade X Page 80 / 190

Step 9. Create a test environment by cloning the existing myenv environment.

$ conda create --name test --clone myenv

Step 10. Install a new package, such as requests in the environment.

$ conda install requests

Step 11. To install packages from different sources like conda-forge, run conda

install -c conda-forge package_name and replace package_name with the

name of the package that you want to install.

Step 12. Clear all unused packages and caches from your environment.

$ conda clean --all

Step 13. Export the Conda environment to a file like environment.yml.

$ conda env export > environment.yml

Step 14. Import the environment to reinstall all necessary packages and

dependencies.

$ conda env create -f environment.yml

Step 15. Use conda run to execute commands in a specific environment

without activating it. For example, run the script.py file in the myenv

environment.

$ conda run -n myenv python -c "print('Hello, World')"

Creating basic arrays using NumPy

NumPy is a main object for the creation of homogeneous multidimensional

arrays. An array is like a list of elements. Homogeneous means all the elements

are similar in nature. So a Numpy array consists of a table of elements. All the

elements in the NumPy are indexed by a tuple of non negative integers. The

number of dimensions of the array are called as axex in the numpy.

Figure… shows a one dimensional (1D), two dimensional (2D), three dimensional

(3D) array.

Fig. 1.3 : 1D array, 2D array and 3D array

Such arrays can be created in numpy using the array class called as ndarray.

The important attributes of ndarray objects are as given below.

Creating Arrays in NumPy

There are 6 general mechanisms for creating arrays.

1. Conversion from other Python structures such as lists and tuples.

2. Intrinsic NumPy array creation functions (e.g. arrange, ones, zeros, etc.).

3. Replicating, joining, or mutating existing arrays.

AI Assistant, Grade X Page 81 / 190

4. Reading arrays from disk, either from standard or custom formats.

5. Creating arrays from raw bytes through the use of strings or buffers.

6. Use of special library functions such as random.

NumPy is used to work with arrays. The array object in NumPy is called

ndarray. NumPy ndarray objects can be created by using the array() function as

illustrated in Example 1.1.

type() is a built-in Python function that displays the type of the object passed to

it. Like in above code it shows that arr is numpy.ndarray type.

To create an ndarray, you can pass a list, tuple or any array-like object into the

array() method, and it will be converted into an ndarray, as illustrated in the

Example 1.2.

Dimensions in Arrays

There are two forms of NumPy arrays – one dimensional array, known as

vectors, and multidimensional arrays, known as matrices. NumPy has a whole

sub module dedicated towards matrix operations called numpy.mat

Example 1.3, illustrates how to create 1D, 2D and 3D arrays.

AI Assistant, Grade X Page 82 / 190

AI Assistant, Grade X Page 83 / 190

Checking Dimensions of Array

It is possible to check the dimension of the array. NumPy Arrays provides the

ndim attribute that returns an integer value indicating the number of

dimensions the array. Example 1.4, illustrates to check the dimension of array.

NumPy Arrays Vs Python Lists

Although NumPy arrays also hold elements like Python List, yet Numpy arrays

are different data structures from Python lists. The key differences are as

follows.

NumPy Array Python List

It is required to install and import

Numpy Library to access Numpy Arrays.

It is a built-in function of python

available in the core library of

python.

Once a NumPy array is created, it is not

possible to change its size. It is required

to create a new array or overwrite the

existing one.

It is possible to append/insert

values in List.

NumPy array contain elements of same

type (homogeneous)

List contain elements of different

type (heterogeneous)

Element wise operation is possible in

the NumPy array.

Element wise operation is not

possible on the list.

An equivalent NumPy array occupies

much less space than a Python list.

List occupies much more space

than an array.

It is faster as compared to lists. It is slow as compared to NumPy

Array.

NumPy array supports vectorized

operations.

List does not support vectorized

operations.

Example 1.5: It is possible to convert a python list into a NumPy array with the

help of NumPy array() function. Example 1.5 illustrates this.

AI Assistant, Grade X Page 84 / 190

In this example, L = [12,23,34,22] is listed. The statement aa=np.array(L) will

convert this list into an array and store it into “aa”.

Example 1.6 : Following python code illustrates that NumPy array can perform

vector addition but List cannot perform it.

Accessing Array Elements

It is possible to access an array element by referring to its index number. The

indexes in NumPy arrays start with 0, meaning the first element has index 0,

and the second has index 1 and so on. Example 1.7 llustrates to access the

array elements.

AI Assistant, Grade X Page 85 / 190

A table is a 2-D array with rows and columns, where the dimension represents

the row and the index represents the column. To access elements from 2-D

arrays, a comma is used to separate integers representing the dimension and

the index of the element.

Similarly, to access elements from 3-D arrays we can use comma separated

integers representing the dimensions and the index of the element.

Example 1.8 illustrates to access the elements of a 2-Dim and 3-Dim array.

Data Types in NumPy

There are a large number of data types that are supported by NumPy. For

example, in NumPy we can have integer type, floating type, complex type,

Boolean type, string type, object type, date and time type.

Integer Type

This type is used for storing whole numbers with varying bit sizes and signs.

Data

Type
Description Range Example

int8
8-bit signed

integer
-128 to 127

>>> np.array([127, -128], dtype
=np.int8)

array([127, -128], dtype=int8)

uint8

8-bit

unsigned

integer

0 to 255
>>> np.array([0,255],
dtype=np.uint8)

array([0, 255], dtype=uint8)

int16

16-bit

signed

integer

-32,768 to

32,767

>>> np.array([-32768, 32767],
dtype=np.int16)

array([-32768, 32767],
dtype=int16)

AI Assistant, Grade X Page 86 / 190

Data

Type
Description Range Example

uint16

16-bit

unsigned

integer

0 to 65,535
>>> np.array([0, 65535],
dtype=np.uint16)

array([0, 65535], dtype=uint16)

int32

32-bit

signed

integer

-

2,147,483,64

8 to

2,147,483,64

7

>>> np.array([1, -2147483648],
dtype=np.int32)

array([1, -2147483648],
dtype=int32)

uint32

32-bit

unsigned

integer

0 to

4,294,967,29

5

>>> np.array([0, 4294967285],
dtype=np.uint32)

array([0, 4294967285],
dtype=uint32)

int64

64-bit

signed

integer

Very large

range

>>> np.array([1, -
9223372036854775808],
dtype=np.uint64)

array([1, 9223372036854775808],
dtype=uint64)

uint64

64-bit

unsigned

integer

Very large

range

>>> np.array([1, -
9223372036854775808],
dtype=np.int64)

array([1, -9223372036854775808])

2. Floating-Point Types

This type is used for numbers with decimal points.

Data

Type

Descript

ion
Range Example

float16
Half

precision

Approx.

±65,504

>>> np.array([1.5, -
2.5],dtype=np.float16)

array([1.5, -2.5], dtype=float16)

float32
Single

precision

Approx.

±3.4 ×

10^38

>>> np.array([1.234, -5.678],
dtype=np.float32)

array([1.234, -5.678], dtype=float32)

float64
Double

precision

Very large

range

>>> np.array([1.123456789, -
9.87654321], dtype=np.float64)

array([1.12345679, -9.87654321])

AI Assistant, Grade X Page 87 / 190

3. Complex Types

This type is for complex numbers with real and imaginary parts.

Data

Type
Description Example

complex
64

Complex number

with two 32-bit floats

>>> np.array([1+2j, 3-4j],
dtype=np.complex64)

array([1.+2.j, 3.-4.j],
dtype=complex64)

complex
128

Complex number

with two 64-bit floats

>>> np.array([1.5+2.5j, -3.5+4.5j],
dtype=np.complex128)

array([1.5+2.5j, -3.5+4.5j])

4. Boolean Type

This type is used for True or False Boolean Type. It is used for logical operations.

Data

Type
Description Example

bool_
Boolean type

(True/False)

>>> np.array([True, False],
dtype=np.bool_)

array([True, False])

5. String Types

This type is used for fixed-size strings.

Data

Type
Description Example

string_
Fixed-size ASCII

string

>>> np.array(['a', 'bc'],
dtype=np.string_)

array([b'a', b'bc'], dtype='|S2')

unicode_
Fixed-size Unicode

string

>>> np.array(['hello', 'world'],
dtype=np.unicode_)

array(['hello', 'world'], dtype='<U5')

6. Object Type

Used for arbitrary Python objects.

Data

Type
Description Example

object_ Python object type
>>> np.array([1, 'string', 3.14],
dtype=np.object_)

array([1, 'string', 3.14], dtype=object)

AI Assistant, Grade X Page 88 / 190

7. Datetime and Timedelta Types

This is used for handling dates, times, and durations.

Data

Type
Description Example

datetime
64

Date and time

representation

>>> np.array(['2024-12-17'],
dtype=np.datetime64)

array(['2024-12-17'],
dtype='datetime64[D]')

timedelt
a64

Duration or time

difference

>>> np.array([10, 20],
dtype='timedelta64[D]')

array([10, 20], dtype='timedelta64[D]')

Examples demonstrating Data Types

By default Python has string, integer, float, boolean data types. NumPy has

some extra data types, and refers to data types with one character, like i for

integers, u for unsigned integers. The NumPy array object has a property called

dtype that returns the data type of the array.

Example 1.9 illustrates to create NumPy array of different data types.

Creating Arrays with a Defined Data Type

The array() function is used to create arrays that can take an optional argument

as dtype that allows to define the expected data type of the array elements. If the

data element is not of specified data type, it generates error.

Example 1.10 illustrates how to create an array with specified data types.

Example to create an array of specified data type

>>> ar1=np.array([1,2,3,4], dtype='S')

>>> print ('The array is : ',ar1)

AI Assistant, Grade X Page 89 / 190

The array is : [b'1' b'2' b'3' b'4']

>>> print('The data type of array is :', ar1.dtype)

The data type of array is : |S1

In the above example, the original numeric array is converted into string by

using dtype. In the output the prefix b indicates the plain bytes in front of the

string. The data type of array is |S1. |S1 indicates the string of length 1.

Example 1.11 illustrates how to create an array with data type 4 bytes integer.

Example to create an array with data type 4 bytes integer

>>> ar2=np.array([1,2,3,4], dtype='i4')

>>> print('The array is : ',ar2)

The array is : [1 2 3 4]

>>> print('The data type of array is :',ar2.dtype)

The data type of array is : int32

Example 1.12 illustrates to create an array with integer and string.

Example to create an arrary with interger and string

>>> ar3=np.array(['1','2','a'], dtype='i')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'a'

AI Assistant, Grade X Page 90 / 190

In this example the literal cannot be converted into integer and hence it gives

the error.

It is possible to create a NumPy array containing the data element of the same

data type as well as the data element of different data types.

Converting Data Type on Existing Arrays

The data type of an existing array can be changed. To do this, make a copy of

the array with the astype() method. The astype() function creates a copy of the

array, and allows to specify the data type as a parameter. The data type can be

specified using a string, like 'f' for float, 'i' for integer or you can use the data

type directly like float for float and int for integer.

Example 1.12 illustrates to change data type from float to integer by using ‘i’ as

parameter.

NumPy Array Properties

A NumPy array is a powerful data structure in Python that provides many

properties for working efficiently with large datasets. Here are some of its key

properties:

1. Shape and Size Properties

AI Assistant, Grade X Page 91 / 190

ndarray.shape : Returns a tuple representing the dimensions of the array such

as rows and columns. Example 1.13 illustrates to print the shape of the array.

>>> a = np.array([[1, 2], [3, 4], [5, 6]])

>>> print(a.shape)

(3, 2)

The output 3, 2 indicates that the array consists of 3 rows and 2 columns. This

is the shape of an array.

ndarray.ndim : Returns the number of dimensions (axes) of the array.

Example 1.14 illustrates to print the dimension of the array.

>>> a=np.array([1, 2, 3])

>>> print(a.ndim)

1

The output 1 indicates the array of one dimension.

ndarray.size : Returns the total number of elements in the array. Following

example illustrates the total number of elements in the array.

>>> a = np.array([[1, 2], [3, 4]])

>>> print(a.size)

4

The output 4 indicates that there are a total 4 elements in the array.

ndarray.itemsize : Returns the size (in bytes) of each element in the array.

Example 1.15 illustrates to print the size of array elements in bytes.

>>> a = np.array([1, 2, 3], dtype=np.int32)

>>> print(a.itemsize)

4

The output 4 indicates the size of array elements is 32 bits means 4 bytes.

ndarray.nbytes : Returns the total memory consumed by the array (in bytes).

Example 1.16 illustrates to print the total memory consumed by the array (in

bytes).

>>> a = np.array([1, 2, 3])

>>> print(a.nbytes)

24

The output 24 indicates the total 24 bytes of memory consumed by the array.

(assuming 64-bit integers)

2. Data Type Properties

ndarray.dtype : Returns the data type of the elements in the array. Example

1.17 illustrates to display data type of the elements in the array.

AI Assistant, Grade X Page 92 / 190

>>> a = np.array([1, 2, 3])

>>> print(arr.dtype)

int64

The output 64 indicates the data type of the elements in the array is 64 bits

integer.

ndarray.astype(dtype): Allows conversion of array elements to a specified

type. Example 1.18 illustrates to convert the data type of the array elements to

the specified data type.

>>> a = np.array([4.3, 5.4])

>>> int_a = a.astype(int)

>>> print(int_a)

[4 5]

The output [4 5] shows that the float elements of array are converted into integer

values.

3. Reshaping and Views

Reshaping means changing the shape of an array. The shape of an array is the

number of elements in each dimension. Reshaping can change the shape of an

array. It is possible to add or remove dimensions or change the number of

elements in each dimension, provided the number of elements should be of

exact count.

ndarray.reshape(shape): Returns a new array with the same data but a

different shape. Example 1.19 illustrates to reshape the array of the same data

with different shapes.

>>> a = np.array([1, 2, 3, 4])

>>> reshaped = a.reshape(2, 2)

>>> print(reshaped)

[[1 2]

 [3 4]]

ndarray.ravel(): Flattens the array into a 1D array. Example 1.20 illustrates

to convert the 2D array to a 1D array with the same elements.

>>> a = np.array([[1, 2], [3, 4]])

>>> print(a.ravel())

[1 2 3 4]

The output [1 2 3 4] shows that the 2D array is converted to 1D array.

It is possible to convert 9 elements of 1 dimensional array to 2-dimensional

array, but it is not possible to convert 8 elements of 1 dimensional array to 2-

AI Assistant, Grade X Page 93 / 190

dimensional array, it generates error. Example 1.21 illustrates to reshaping the

array from 1 dimension to 2 and 3 dimensions.

4. Accessing and Slicing

Slicing means taking elements from one given index to another given index. It is

possible to slice instead of an index like this: [start:end]. It is possible to define

the step, like this: [start:end:step]. If start or end is not passed, by default the

start is considered 0, and end is considered length of array in that dimension. If

a step is not passed it is considered as 1.

NumPy arrays support advanced slicing and indexing. Example 1.22 illustrates

to to access the elements of an array and slice the elements of an array.

>>> a = np.array([10, 20, 30, 40, 50])

>>> print(a[1:4])

[20 30 40]

>>> print(a[::2])

[10 30 50]

>>>

AI Assistant, Grade X Page 94 / 190

The first output shows the accessing the array elements from second to fifth

element considering the index as 0.

The second output shows the slicing of the array in step 2 to print the first,

third and fifth element of the array.

Example 1.22 illustrates the array slicing.

Negative Slicing

The index of the array when referred from the end by using the minus operator,

then it is negative indexing. Slicing can be done in steps by specifying steps.

Example 1.23 illustrates the negative indexing performed on the array and

slicing in steps.

Example 1.24 illustrates some more programs.

AI Assistant, Grade X Page 95 / 190

5.

Mathematical and Logical Properties

NumPy arrays enable element-wise operations:

>>> a = np.array([1, 2, 3])

>>> print(a * 2)

[2 4 6]

The output shows that each element of the array is multiplied by 2.

6. Broadcasting

Arrays can operate with different shapes using broadcasting rules.

>>> a1 = np.array([1, 2, 3])

>>> a2 = np.array([[1], [2], [3]])

>>> a = a1 + a2

>>> print (a)

[[2 3 4]

 [3 4 5]

 [4 5 6]]

AI Assistant, Grade X Page 96 / 190

The output shows that each element of array a1 is added to all the elements of

array a2 to form the new array.

7. Boolean Properties

ndarray.all() : Returns True if all elements are non-zero or True.

>>> a = np.array([1, 2, 3])

>>> print(a.all())

True

The output shows that all the elements array are non-zero.

ndarray.any(): Returns True if at least one element is non-zero or True.

>>> a = np.array([0, 0, 1])

>>> print(a.any())

True

The output shows that at least one element of the array is non-zero

8. Copy vs View

ndarray.view() : Creates a new array object with shared data.

ndarray.copy() : Creates a new array with a copy of the data.

These properties make NumPy arrays efficient and versatile for numerical and

scientific computing.

AI Assistant, Grade X Page 97 / 190

Session 2. Array Manipulation using NumPy

NumPy is a foundation library for scientific computations in Python. It contains

sophisticated functions and tools for integrating with other programming

languages as well. During data analysis, it is widely used to handle arrays as it

offers a powerful n-dimensional array object, faster than a traditional list in

Python. In this session, we will discuss different array manipulation techniques.

Joining and splitting

Joining and splitting arrays are fundamental operations in NumPy. Here's a

detailed explanation of how to perform these operations:

Joining Arrays

Joining merges multiple arrays into one. NumPy provides several functions to

join arrays along specified axes.

1. Concatenation of Arrays

np.concatenate() : This function is used to join two or more arrays along an

existing axis. Here, arrays must have the same shape along the axis being

joined. If the axis is None, arrays are flattened before use. Default is 0. Example

2.1 illustrates the joining of two arrays.

Example 2.1:

>>> import numpy as np

Concatenation of Arrays

>>> a1=np.array([[1,2],[3,4]])

>>> a2=np.array([[5,6],[7,8]])

>>> # Join along rows (axis=0)

>>> result = np.concatenate((a1,a2), axis=0)

>>> print (result)

[[1 2]

 [3 4]

 [5 6]

 [7 8]]

AI Assistant, Grade X Page 98 / 190

In the output, observe that array a1 and a2 are joined together to produce a

resultant array consisting of all elements of array a1 and a2. Observe that when

axis=0 then joining will be a long row as illustrated in the Example 2.2.

Example 2.2:

>>> # Join along columns (axis=1)

>>> result = np.concatenate((a1, a2), axis=1)

>>> print (result)

[[1 2 5 6]

 [3 4 7 8]]

Observe that when axis=1 then arrays are joined along columns.

AI Assistant, Grade X Page 99 / 190

2. Vertical Stack

np.vstack() : This function is used to stack arrays vertically, that is, row-wise.

This is equivalent to concatenation along the first axis after 1-D arrays of

shape (N,) have been reshaped to (1,N).

Example 2.3:

Vertical Stack

>>> a1 = np.array([1, 2])

>>> a2 = np.array([3, 4])

>>> result = np.vstack((a1, a2))

>>> print (result)

[[1 2]

 [3 4]]

In Example 2.3, observe that the array a1 and a2 are stacked vertically.

3. Horizontal Stack

np.hstack() : This function is used to stack arrays horizontally, means, column-

wise. This is equivalent to concatenation along the second axis, except for 1-D

arrays where it concatenates along the first axis. Example 2.4 illustrates how to

stack the array horizontally.

Example 2.4:

Horizontal Stack

>>> a1 = np.array([1, 2])

>>> a2 = np.array([3, 4])

AI Assistant, Grade X Page 100 / 190

>>> result = np.hstack((a1, a2))

>>> print (result)

[1 2 3 4]

In this output, you can observe that array a1 and a2 are stacked horizontally.

4. Depth Stack

np.dstack() : This function is used to stack arrays along the third dimension,

that is, depth-wise. This is equivalent to concatenation along the third axis after

2-D arrays of shape (M, N) have been reshaped to (M, N,1) and 1-D arrays of

shape (N,) have been reshaped to (1, N,1). Example 2.5 illustrates how to stack

the array depthwise.

Example 2.5:

Depth Stack

>>> a1 = np.array([[1, 2], [3, 4]])

>>> a2 = np.array([[5, 6], [7, 8]])

>>> result = np.dstack((a1, a2))

>>> print(result)

[[[1 5]

 [2 6]]

 [[3 7]

 [4 8]]]

AI Assistant, Grade X Page 101 / 190

5. Column Stack

np.column_stack() : This function stacks 1D arrays as columns into a 2D

array. Take a sequence of 1-D arrays and stack them as columns to make a

single 2-D array. 2-D arrays are stacked as-is, just like with hstack. 1-D arrays

are turned into 2-D columns first. Example 2.6 illustrates how to stack the

array in a column.

Example 2.6:

Column Stack

>>> a1 = np.array([1, 2])

>>> a2 = np.array([3, 4])

>>> result = np.column_stack((a1, a2))

>>> print(result)

[[1 3]

 [2 4]]

Observe that in Example 2.6, row of array a1 and a2 is inserted as column in

result. Result is a two-dimensional array.

AI Assistant, Grade X Page 102 / 190

6. Row Stack

np.row_stack() : This function stacks 1D arrays as rows into a 2D array. It is

similar to vstack. It stack arrays in sequence vertically, that is, row wise. This is

equivalent to concatenation along the first axis after 1-D arrays of shape (N) have

been reshaped to (1,N). Example 2.7 illustrates to stack the array in a column.

Example 2.7

Row Stack

>>> a1 = np.array([1, 2])

>>> a2 = np.array([3, 4])

>>> result = np.row_stack((a1, a2))

>>> print(result)

[[1 2]

 [3 4]]

Observe that one dimensional arrays a1 and a2 are stacked as rows in result.

Result is a two-dimensional array.

AI Assistant, Grade X Page 103 / 190

Splitting Arrays

Splitting is the reverse operation of Joining. Joining merges multiple arrays into

one and Splitting breaks one array into multiple. NumPy provides functions to

split arrays into multiple sub-arrays.

1. Split an Array

np.split() : This function is used to Split an array into multiple sub-arrays along

a specified axis. Its general format is: numpy.split(ary, indices_or_sections,

axis=0).

If indices_or_sections are an integer, N, the array will be divided into N equal

arrays along the axis. If such a split is not possible, an error is raised.

If indices_or_sections are a 1-D array of sorted integers, the entries indicate

where along the axis the array is split. Example 2.7 illustrates the splitting of

array.

Example 2.7

Split an Array

>>> a = np.array([1, 2, 3, 4, 5, 6])

>>> # Split into 3 equal parts

>>> result = np.split(a, 3)

>>> print(result)

[array([1, 2]), array([3, 4]), array([5, 6])]

Observe that in the above example are is split into three equal parts. Each part

contains two elements. If the array cannot be split equally, it raises an error.

2. Unequal Splitting

AI Assistant, Grade X Page 104 / 190

np.array_split() : This function splits an array into multiple sub-arrays but

allows unequal splitting. It’s general format is: numpy.array_split(ary,

indices_or_sections, axis=0).

This function allows indices or sections to be an integer that does not equally

divide the axis. For an array of length l that should be split into n sections, it

returns l % n sub-arrays of size l//n + 1 and the rest of size l//n.

Example 2.7 illustrates the splitting of array.

Splitting of array

>>> a = np.array([1, 2, 3, 4, 5])

>>> # Split into 3 parts (unequal)

>>> result = np.array_split(a, 3)

>>> print(result)

[array ([1, 2]), array ([3, 4]), array ([5])]

Observe that the given array contains five elements. It is splitted into three

arrays. The first two arrays contain two elements each and the third array

contain only one element.

3. Vertical Split

np.vsplit() : This function splits an array vertically, meaning, row-wise. It works

on arrays with at least 2 dimensions. This is equivalent to split with axis=0 by

default. The array is always split along the first axis regardless of the array

dimension.

Example 2.8 illustrates the vertical splitting of array.

Vertical splitting of array.

>>> a = np.array([[1, 2], [3, 4], [5, 6]])

>>> result = np.vsplit(a, 3)

>>> print(result)

[array([[1, 2]]), array([[3, 4]]), array([[5, 6]])]

Observe that the array a is vertically splitted into three arrays each containing

two elements.

AI Assistant, Grade X Page 105 / 190

4. Horizontal Split

np.hsplit() : This function splits an array horizontally, meaning column-wise. It

works on arrays with at least 2 dimensions. It is equivalent to split with axis=1,

the array is always split along the second axis except for 1-D arrays, where it is

split at axis=0.

Example 2.9 illustrates the horizontal splitting of array.

Horizontal splitting of array

>>> a = np.array([[1, 2, 3], [4, 5, 6]])

>>> result = np.hsplit(a, 3)

>>> print(result)

[array([[1],

 [4]]), array([[2],

 [5]]), array([[3],

 [6]])]

Observe that array a is split into three arrays horizontally.

5. Depth Split

np.dsplit() : This function splits an array along the third dimension, that is,

depth-wise. It works on arrays with at least 3 dimensions. It is equivalent to

split with axis=2, the array is always split along the third axis provided the array

dimension is greater than or equal to 3. Example 2.10 illustrates the splitting

of array in depth.

Splitting of array in depth

>>> a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

>>> result = np.dsplit(a, 2)

>>> print(result)

[array([[[1],

 [3]],

 [[5],

 [7]]]), array([[[2],

 [4]],

 [[6],

AI Assistant, Grade X Page 106 / 190

 [8]]])]

Observe that the array a is a three-dimensional array. It is split into two arrays.

Ref Fig. (Modify it as per example)

Reshaping Arrays

Reshaping means changing the shape of an array. The shape of an array is the

number of elements in each dimension. By reshaping we can add or remove

dimensions or change the number of elements in each dimension.

Reshape Function

np.reshape() : This function creates a new array with the same data but a

different shape. The total number of elements must remain the same. You can

specify one dimension as -1, and NumPy will infer its value.

The general format is:

numpy.reshape (a, /, shape=None, order='C', *, newshape=None, copy=None).

Syntax

np.reshape(array, new_shape)

Example 2.10 illustrates the reshapping of array.

Reshapping of array

>>> import numpy as np

>>> a = np.array([1, 2, 3, 4, 5, 6])

>>> # Reshape into a 2x3 array

>>> reshaped = np.reshape(a, (2, 3))

>>> print(reshaped)

AI Assistant, Grade X Page 107 / 190

>>> # Infer one dimension using -1

>>> reshaped = np.reshape(a, (-1, 2))

>>> print(reshaped)

>>>

Observe that in the above example, the given array arr is reshaped into two

arrays with the same number of elements. Each array contains three elements.

When you infer one dimension using -1 then each array contains 2 elements.

2. ndarray.reshape() : It works like np.reshape() but is a method of the array

object.

a = np.array([1, 2, 3, 4])

reshaped = a.reshape(2, 2)

print(reshaped)

Output:

Observe that in the above example, the given array is reshaped into two arrays

with the same elements.

3. Flattening Arrays

Flattening means to convert an array into a one-dimensional array. Flattening

an array is the process of taking the nested elements within an array and

putting them into a single array, in other words converting a multi-dimensional

array into a single one-dimensional array. There are two functions to flatten the

array.

ndarray.ravel() : Returns a flattened view if possible.

ndarray.flatten() : Returns a copy of the flattened array.

Example 2.11 illustrates the Flattening an array.

>>> Flattening an array

>>> a = np.array([[1, 2], [3, 4]])

>>> print(a.ravel())

[1 2 3 4]

AI Assistant, Grade X Page 108 / 190

>>> print(a.flatten())

[1 2 3 4]

Observe that in the above example a two-dimensional array is converted into

one dimensional array.

Resizing Arrays

To resize an array, you can create a new array with a larger capacity, copy the

elements from the old array to the new one, and then replace the old array with

the new one.

np.resize() : It creates a new array with a specified shape. If the new shape has

more elements, the array is repeated to fill it. If the new shape has fewer

elements, the array is truncated.

Syntax:

np.resize(array, new_shape)

Example 2.12 illustrates the to resize the array.

>>> # Resizing Array

>>> a = np.array([1, 2, 3, 4])

>>> # Resize to a 2x3 array (data repeats)

>>> resized = np.resize(a, (2, 3))

>>> print(resized)

>>>

>>> # Resize to a smaller shape (truncated)

>>> resized = np.resize(arr, (2, 2))

>>> print(resized)

>>> In the above example the given array arr is resized into a 2x3 array with

data repeated. Further it is resized to a smaller shape.

AI Assistant, Grade X Page 109 / 190

2. In-Place Resizing

ndarray.resize() : This function modifies the array itself to match the new

shape. If the new shape is larger, the array is filled with default values usually 0.

Syntax:

ndarray.resize(new_shape)

Example 2.13 illustrates how to resize the array in-place.

Resize the array in place

>>> a = np.array([1, 2, 3, 4])

>>> # Resize the array in-place

>>> a.resize((2, 3))

>>> print(a)

>>>

Observe that in the above example the given array arr is resized into a two-

dimensional array.

Key Differences Between Reshape and Resize

Feature Reshape Resize

Returns/

Modifies

Returns a new array (view or

copy).

Modifies the array in-

place.

Size Match
Total elements must match

before reshaping.

May add or truncate

elements.

Behaviour on

Change

Keeps the data intact, just

rearranges it.

May repeat or truncate

elements.

Changing Dimensions

1. Adding Dimensions

We can add or remove dimensions to an array by using Numpy functions.

np.newaxis : Adds a new dimension to an array.

np.expand_dims() : Explicitly adds a new axis at a specific position.

Example 2.14 illustrates how to add a new dimension to array.

>>> # adding dimension to array.

>>> a = np.array([1, 2, 3])

>>> # Add a new dimension

AI Assistant, Grade X Page 110 / 190

>>> print(a[np.newaxis, :])

[[1 2 3]]

>>>

>>> print(np.expand_dims(a, axis=1))

In the above example the given one dimensional array is converted into a two-

dimensional array.

2. Removing Dimensions

np.squeeze() : Removes dimensions of size 1.

Example 2.15 illustrates how to remove new dimension of array.

>>> # Removing dimension of array.

>>> a = np.array([[[11, 22, 33]]])

>>> # Shape: (1, 1, 3)

>>> # Remove size-1 dimensions

>>> squeezed = np.squeeze(a)

>>> print(squeezed)

In the above example observe that the dimension of array a is reduced.

AI Assistant, Grade X Page 111 / 190

Session 3. Array Computation using NumPy

Arithmetic operations such as addition, subtraction, multiplication, division and

exponentiation can be performed on arrays in Numpy.

Operations such as sum, product, mean, standard deviation, dot product and

matrix multiplication can be performed on arrays in Numpy.

NumPy supports efficient element-wise arithmetic operations on arrays. These

operations are performed on corresponding elements of the arrays and are faster

than traditional Python loops.

Arithmetic Operations

The primary arithmetic operations supported by NumPy are:

1. Addition

Addition corresponding elements of two arrays or an array and a scalar.

Operator used for addition is +. Function for addition is np.add().

Example 3.1 illustrates the addition of two arrays.

Addition of two arrays

>>> import numpy as np

>>> a1 = np.array([11, 22, 33])

>>> a2 = np.array([10, 20, 30])

>>> # Element-wise addition

>>> result = a1 + a2

>>> print(result)

[21 42 63]

In the above example, observe that column wise addition of two arrays a1 and

a2 takes place.

It is also possible to add a scalar in the array. By adding a scalar in the array,

the scalar number will get added to each element of the array in the resultant

array.

Example 3.2 illustrates to add a scalar to array.

>>> # Adding a scalar to array

>>> result = a1 + 10

>>> print(result)

[21 32 43]

AI Assistant, Grade X Page 112 / 190

In the above Example 3.2, a scalar 10 is added into each element of array a1.

Numpy.add() Function

NumPy’s numpy.add() is a function that performs element-wise addition on

NumPy arrays. This means it adds the corresponding elements between two

arrays, element by element, instead of treating them as single values.

numpy.add() function is used when we want to compute the addition of two

arrays. It adds arguments element-wise. If the shape of two arrays is not the

same, that is a1. shape! = a2. shape, they must be broadcastable to a common

shape.

Example 3.3 illustrates to use numpy add function.

Using numpy add function.

>>> import numpy as np

>>> # Numpy array and a scalar

>>> a1 = np.array([11, 22, 33])

>>> # Using numpy.add() with an array and a scalar

>>> result = np.add(a1, scalar)

>>> print("Result of adding array and scalar:", result)

Result of adding array and scalar: [15 26 37]

2. Subtraction

Subtraction corresponds to the difference of elements of two arrays or a scalar

from an array. Operator used for subtraction is – and the function for

subtraction is np.subtract().

Example 3.4 illustrates the subtraction on arrays.

Subtraction on arrays.

>>> import numpy as np

>>> a1 = np.array([10, 20, 30])

>>> a2 = np.array([40, 50, 60])

>>> result = a2 - a1

>>> print(result)

AI Assistant, Grade X Page 113 / 190

[30 30 30]

In the above output, observe the element wise difference of two arrays a1 and

a2.

It is also possible to subtract a number from an array. It will subtract the

specified number from each element of the array.

Example 3.5 illustrates to subtract a specified number from arrays.

>>> Subtracting a specified number from arrays

>>> result = a1 - 11

>>> print(result)

[-1 9 19]

In the above example, the number 11 is subtracted from each element of the

array and gives the resultant array.

Numpy.subtract Function

numpy.subtract() function is used when we want to compute the difference of

two arrays. It returns the difference of arr1 and arr2, element-wise.

Example 3.6 illustrates to use numpy.subtract() function.

>>> # use numpy.subtract() function

>>> import numpy as np

>>> a1_in = np.array([[21, -40, 45], [-16, 12, 10]])

>>> a2_in = np.array([[10, -15, 25], [20, -22, 19]])

>>> print ("1st Input array :\n", a1_in)

1st Input array :

 [[21 -40 45]

 [-16 12 10]]

>>> print ("1st Input array :\n", a2_in)

1st Input array :

 [[10 -15 25]

AI Assistant, Grade X Page 114 / 190

 [20 -22 19]]

>>> a_out = np.subtract(a1_in, a2_in)

>>> print ("Output array:\n", a_out)

Output array:

 [[11 -25 20]

 [-36 34 -9]]

>>>

3. Multiplication

This operation multiplies corresponding elements of two arrays or scales an

array by a scalar. Operator used for multiplication is *. Function used for

multiplication is np.multiply().

Example 3.7 illustrates the multiplication of arrays.

>>> # Multiplication of arrays

>>> import numpy as np

>>> a1 = np.array([11, 22, 33])

>>> a2 = np.array([3, 2, 1])

>>> result = a1 * a2

>>> print(result)

[33 44 33]

Observe that element wise multiplication of two arrays a1 and a2 will take place.

Similarly it is possible to multiply the array with scalar. The scalar will get

multiplied by each element of the array.

AI Assistant, Grade X Page 115 / 190

>>> result = a1 * 2

>>> print(result)

[22 44 66]

Observe the output the scalar 2 is multiplied with all elements of array a1.

Numpy.Multiplication

numpy.multiply() function is used when we want to compute the multiplication

of two arrays. It returns the product of arr1 and arr2, element-wise.

Example 3.8 illustrates to use of the numpy.multiply() function.

>>> # Python program explaining numpy.multiply() function

>>> import numpy as np

>>> a1_in = np.array([[21, -17, 15], [-6, 12, 10]])

>>> a2_in = np.array([[10, -7, 8], [15, -2, 19]])

>>> print ("1st Input array : \n", a1_in)

1st Input array :

 [[21 -17 15]

 [-6 12 10]]

>>> print ("2nd Input array : \n", a2_in)

2nd Input array :

 [[10 -7 8]

 [15 -2 19]]

>>> out_arr = np.multiply(a1_in, a2_in)

>>> print ("Resultant output array: \n", a_out)

Resultant output array:

 [[11 -25 20]

 [-36 34 -9]]

>>>

AI Assistant, Grade X Page 116 / 190

4. Division

This operation divides corresponding elements of two arrays or divides an array

by a scalar. Operator used for division is / and the function used for division is

np.divide().

Example 3.9 illustrates the the division of arrays.

>>> # Python program for division of array

>>> import numpy as np

>>> a1 = np.array([11, 22, 33])

>>> a2 = np.array([44, 55, 66])

>>> result = a2 / a1

>>> print(result)

[4. 2.5 2.]

>>> Observe that elements of array a2 are divided by elements of array a1.

Division by Scalar

It is possible to multiply the array with scalar. The scalar will get multiplied by

each element of the array.

Example 3.9 illustrates the division by saclar

>>> result = a1 / 2

>>> print(result)

[5.5 11. 16.5]

In the above example all the elements of array a1 are divided by 2.

AI Assistant, Grade X Page 117 / 190

NumPy.divide()

Array element from the first array is divided by elements from the second

element (all happens element-wise). Both arr1 and arr2 must have the same

shape and element in arr2 must not be zero; otherwise it will raise an error.

Example 3.10 illustrates to use of the numpy.divide() function.

>>> # Python program explaining divide () function

>>> import numpy as np

>>> # input_array

>>> a1 = [22, 27, 12, 21, 23]

>>> a2 = [2, 3, 4, 5, 6]

>>> out = np.divide(a1, a2)

>>> print ("a1: \n", a1)

a1: [22, 27, 12, 21, 23]

>>> print ("a2: \n", a2)

a2: [2, 3, 4, 5, 6]

>>> print(out)

[11. 9. 3. 4.2 3.83333333]

>>>

Divide by zero error

If any element of the second array is 0 then it is not possible to divide the array

and will raise the division by zero error as illustrated below.

Example 3.11 illustrates the division by zero error .

>>> # Python program explaining divide() function

>>> import numpy as np

>>> # input_array

>>> a1 = [22, 27, 12, 21, 23]

>>> a2 = [2, 3, 0, 5, 6]

>>> print ("a1: \n", a1)

AI Assistant, Grade X Page 118 / 190

a1: [22, 27, 12, 21, 23]

>>> print ("a2: \n", a2)

a2: [2, 3, 0, 5, 6]

>>> out = np.divide(a1, a2)

<stdin>:1: RuntimeWarning: divide by zero encountered in divide

In this output, observe that error is generated on division by 0.

5. Floor Division

This operation performs integer division, that is, it truncates the decimal.

Operator used for floor division is // and the function used is np.floor_divide().

Example 3.12 illustrates the floor division of arrays.

>>> # Python code illustrates the floor division of arrays.

>>> import numpy as np

>>> a1 = np.array([10, 20, 30])

>>> a2 = np.array([44, 59, 62])

>>> result = a2 // a1

>>> print(result)

[4 2 2]

Observe that in the above output the Fractional part of division does not appear

in the result.

Np.floor_divide() Function

Array element from the first array is divided by the elements from the second

array element-wise. Both array 1 and array 2 must have the same shape. It is

equivalent to the Python // operator.

Example 3.13 illustrate to use np.floor_divide() function.

Python program illustrating np.floor_divide() function

import numpy as np

>>> a1 = [2, 2, 2, 3, 3]

AI Assistant, Grade X Page 119 / 190

>>> a2 = [2, 3, 4, 3, 6]

>>> out = np.floor_divide(a1, a2)

>>> print ("array 1: \n ", a1)

array 1: [2, 2, 2, 3, 3]

>>> print ("array2: \n ", a2)

array2: [2, 3, 4, 3, 6]

>>> print ("\nOutput array :\n", out)

Output array :

 [1 0 0 1 0]

>>>

6. Modulus (Remainder)

This operation calculates the remainder of division for each element. Operator

used is % and the function used is np.mod().

Example 3.14 illustrate the use of Modulus.

>>> # Python program to illustrate Modulus (Reminder)

>>> import numpy as np

>>> a1 = np.array([10, 20, 30])

>>> a2 = np.array([42, 55, 66])

>>> result = a2 % a1

>>> print(result)

[2 15 6]

>>>

Np.mod() Function

This function returns element-wise remainder of division between two arrays a1

and a2 i.e. a1 % a2. It returns 0 when a2 is 0 and both a1 and a2 are (arrays of)

integers.

Example 3.15 illustrate the use of Np.mod() function.

AI Assistant, Grade X Page 120 / 190

>>> # Python program to illustrate numpy.mod() function

>>> import numpy as np

>>> a1_in = np.array([2, -4, 7])

>>> a2_in = np.array([2, 3, 4])

>>> a_out = np.mod(a1_in, a2_in)

>>> print ("Dividend array : ", a1_in)

Dividend array : [2 -4 7]

>>> print ("Divisor array : ", a2_in)

Divisor array : [2 3 4]

>>> a_out = np.mod(a1_in, a2_in)

>>> print ("Output remainder array:", a_out)

Output remainder array: [0 2 3]

>>>

7. Exponentiation

This operation raises each element of an array to the power of corresponding

elements in another array or a scalar. Operator used for operation is ** and the

function used is np.power().

Example 3.16 illustrate the Exponentiation operation.

>>> # Python program to illustrate exponentiation operation

>>> import numpy as np

>>> a1 = np.array([0, 1, 2])

>>> a2 = np.array([4, 5, 6])

>>> a1exp = a1 ** 2

>>> a2exp = a2 ** 3

>>> print(a1exp)

[0 1 4]

>>> print(a2exp)

AI Assistant, Grade X Page 121 / 190

[64 125 216]

>>> Observe that all elements of array a1 are raised to 2 and a2 raised by 3.

>>> result = np.power(a1, a2)

>>> print(result)

[0 1 64]

>>>

Here all elements of arr1 are raised by elements of arr2. 1**4=1, 2**5=32,

3**6=729.

Np.power() Function

Array element from the first array is raised to the power of the element from the

second element, element-wise. Both arr1 and arr2 must have the same shape

and each element in arr1 must be raised to corresponding +ve value from arr2;

otherwise it will raise a ValueError.

Example 3.17 illustrate the use of np.power function

>>> # Python program illustrating power() function

>>> import numpy as np

>>> # input_array

>>> a1 = [2, 2, 2, 2, 2]

>>> a2 = [2, 3, 4, 5, 6]

>>> out = np.power(a1, a2)

>>> print ("array 1 : ", a1)

array 1 : [2, 2, 2, 2, 2]

>>> print ("array 2 : ", a2)

array 2 : [2, 3, 4, 5, 6]

>>> # output_array

AI Assistant, Grade X Page 122 / 190

>>> print ("\nOutput array : ", out)

Output array : [4 8 16 32 64]

>>>

Broadcasting in Arithmetic

NumPy uses broadcasting to perform operations on arrays of different shapes,

provided they are compatible.

Example 3.18 illustrate the Broadcasing in Arithmetic

>>> # Python program illustrating broadcasting in arithmetic

>>> a = np.array([[1, 2], [3, 4]])

>>> # Broadcasting a scalar

>>> result = a + 12

>>> print(result)

[[13 14]

 [15 16]]

>>> # Broadcasting a 1D array

>>> result = a + np.array([1, 2])

>>> print(result)

[[2 4]

 [4 6]]

>>>

AI Assistant, Grade X Page 123 / 190

Aggregate Arithmetic Operations

These functions compute aggregate results across elements of the array.

Sum

np.sum() function returns the sum of array elements over the specified axis.

Example 3.19 illustrate the use of np.sum() function.

>>> # Python code to illustrate np.sum() function

>>> import numpy as np

>>> a = np.array([3, 5, 6, 7])

>>> print(np.sum(a))

21

Observe that all elements of array are added together to get result 10.

Product

np.prod() function is used to return the product of array elements over
a given axis.

Example 3.19 illustrate the use of np.prod() function.

>>> # Python code to illustrate np.prod() function

>>> import numpy as np

>>> a = np.array([1, 2, 3, 4])

>>> print(np.prod(a))

24

>>> All elements of the array are multiplied together to return value 24.

Mean

AI Assistant, Grade X Page 124 / 190

The function np.mean() returns the arithmetic mean along the specified axis.

Example 3.20 illustrate the use of mean() function.

>>> # Python code to illustrate np.mean() function

>>> import numpy as np

>>> a = np.array([5, 6, 3, 4])

>>> print(np.mean(a))

4.5

>>> Observe that all 4 elements of the array are added together and then it is

divided by 4 to get the result.

Standard Deviation

The function np.std(a) returns the standard deviation of the given array

elements along the specified axis. Standard Deviation (SD) is measured as the

spread of data distribution in the given data set.

Example 3.21 illustrate the use of np.std() function.

>>> # Python code to illustrate np.std() function

>>> import numpy as np

>>> a = np.array([1, 2, 3, 4])

>>> # Output

>>> print(np.std(a))

1.118033988749895

>>>

AI Assistant, Grade X Page 125 / 190

Cumulative Sum

The function np.cumsum(a) returns the cumulative sum of the elements along a

given axis.

Example 3.22 illustrate the use of numpy cumulative sum function.

>>> # Python code to illustrate np.cumsum() function

>>> import numpy as np

>>> a = np.array([1, 2, 3, 4])

>>> # Output

>>> print(np.cumsum(a))

[1 3 6 10]

>>>

Cumulative Product

The function np.cumprod(a) is used to return cumulative products of elements

along a given axis.

Example 3.23 illustrate the use of numpy cumulative product function.

>>> # Python code to illustrate np.cumprod() function

>>> import numpy as np

>>> a = np.array([1, 2, 3, 4])

>>> # Output

>>> print(np.cumprod(a))

[1 2 6 24]

>>>

Matrix Operations

For matrix-specific operations, NumPy provides a specialized function np.dot()

for dot Product. It can handle 2D arrays but considers them as matrices and will

perform matrix multiplication. For N dimensions it is a sum-product over the

last axis of a and the second-to-last of b.

Example 3.24 illustrate the matrix operations .

>>> # Python code to illustrate matrix operations

>>> a = np.array([[1, 2], [3, 4]])

>>> b = np.array([[5, 6], [7, 8]])

AI Assistant, Grade X Page 126 / 190

>>> result = np.dot(a, b)

>>> print(result)

[[19 22]

 [43 50]]

These arithmetic operations make NumPy highly versatile for mathematical and

scientific computations.

Trigonometric Functions

NumPy provides a comprehensive set of trigonometric functions to perform

operations involving angles and trigonometric calculations. Here's a detailed

explanation of these functions:

Basic Trigonometric Functions

These functions compute the trigonometric values of each element in an array.

Angles must be in radians unless specified otherwise.

1. Sine

Sine function computes the sine of each element in the array. The function used

is np.sin().

Example 3.27 illustrate to compute Sine using np.sin() function.

>>> # Python code to illustrate the Sine function

>>> import numpy as np

>>> angles = np.array([0, np.pi/2, np.pi])

>>> result = np.sin(angles)

>>> print('Output \n',result)

Output

 [0.0000000e+00 1.0000000e+00 1.2246468e-16]

Observe that in the result the first value is 0, second value is 1 and third value

is close to 0.

2. Cosine

AI Assistant, Grade X Page 127 / 190

Cosine function computes the cosine of each element. The function used is

np.cos().

Example 3.26 illustrate the Cosine function.

Example 3.27 illustrate to compute Cosine using np.cos() function.

>>> # Python code to illustrate the Cosine function

>>> import numpy as np

>>> angles = np.array([0, np.pi/2, np.pi])

>>> result = np.cos(angles)

>>> print('Output \n',result)

Output

 [1.000000e+00 6.123234e-17 -1.000000e+00]

Observe that in the result the first value is 1, second value is close to 0 and

third value is -1.

3. Tangent

Tangent function computes the tangent of each element. The function used is

np.tan().

Example 3.27 illustrate to compute Tangent using np.tan() function.

>>> # Python code to illustrate the Tangent function

>>> angles = np.array([0, np.pi/2, np.pi])

>>> result = np.tan(angles)

>>> print('Output \n',result)

Output

 [0.00000000e+00 1.63312394e+16 -1.22464680e-16]

>>> Observe that in the result the first value is 0, second value is 1 and third

value is close to 0.

Inverse Trigonometric Functions

These functions compute the inverse trigonometric values, returning angles in

radians.

1. Arcsine

This function computes the arcsine of each element. The function used is

np.arcsin().

Example 3.28 illustrate to compute Arcsine using np.arcsin() function.

>>> # Python code to illustrate the Arcsine function

>>> values = np.array([0,1,-1])

>>> result = np.arcsin(values)

>>> print('Output \n',result)

AI Assistant, Grade X Page 128 / 190

Output

 [0. 1.57079633 -1.57079633]

>>>

2. Arccosine

This function computes the arccosine of each element. The function used is

np.arccos().

Example 3.29 illustrate to compute Arccosine using np.arccos() function.

>>> # Python code to illustrate the Arcsine function

>>> values = np.array([0,1,-1])

>>> result = np.arccos(values)

>>> print('Output \n',result)

Output

 [1.57079633 0. 3.14159265]

>>>

3. Arctangent

This function computes the arctangent of each element. The function used is

np.arctan().

Example 3.30 illustrate to compute Arctangent using np.arctan() function.

>>> # Python code to illustrate the Arctangent function

>>> values = np.array([0,1,-1])

>>> result = np.arctan(values)

>>> print('Output \n',result)

Output

 [0. 0.78539816 -0.78539816]

>>>

4. Arctangent2 (Two-argument Arctangent)

This function computes the arctangent of y/xy/xy/x considering the quadrant of

the point (x,y)(x, y)(x,y). The function used is np.arctan2().

Example 3.31 illustrate to compute Arctangent with two arguments using

np.arctan2() function.

>>> # Python code to illustrate the Arctangent function with two
arguments

>>> y = np.array([1, -1])

>>> x = np.array([1, 1])

>>> result = np.arctan2(y, x)

>>> print('Output \n',result)

Output

AI Assistant, Grade X Page 129 / 190

 [0.78539816 -0.78539816]

>>>

Hyperbolic Trigonometric Functions

These functions compute hyperbolic trigonometric values.

1. Hyperbolic Sine

This function is used to compute hyperbolic sine. The function used is np.sinh().

Example 3.32 illustrate to compute Hyperbolic sine using using np.sinh()

function.

>>> # Python code to illustrate Hyperbolic Sine function

>>> values = np.array([0, 1, -1])

>>> result = np.sinh(values)

>>> print('Output \n',result)

Output

 [0. 1.17520119 -1.17520119]

>>>

2. Hyperbolic Cosine

This function is used to compute hyperbolic cosine. The function used is

np.cosh().

Example 3.33 illustrate to compute Hyperbolic Cosine using using np.cos()

function.

>>> # Python code to illustrate Hyperbolic Cosine function

>>> values = np.array([0, 1, -1])

>>> result = np.cosh(values)

>>> print('Output \n',result)

Output

 [1. 1.54308063 1.54308063]

>>>

3. Hyperbolic Tangent

This function is used to compute hyperbolic tangents. The function used is

np.tanh().

Example 3.34 illustrate to compute Hyperbolic tangent using using np.tanh()

function.

>>> # Python code to illustrate Hyperbolic Tangent function

>>> values = np.array([0, 1, -1])

>>> result = np.tanh(values)

>>> print('Output \n',result)

Output

AI Assistant, Grade X Page 130 / 190

 [0. 0.76159416 -0.76159416]

>>>

4. Inverse Hyperbolic Functions

The function arcsinh is an inverse sine hyperbolic function. The function used is

np.arcsinh(). The function arccosh is an inverse cosine hyperbolic function. The

function used is np.arccosh(). The function arctanh is an inverse tangent

hyperbolic function. The function used is np.arctanh().

Example 3.35 illustrate to compute Inverse Hyperbolic sine using using

np.arcsinh() function.

>>> # Python code to illustrate Inverse Hyperbolic Tangent function

>>> values = np.array([0, 1, -1])

>>> result = np.arcsinh(values)

>>> print('Output \n',result)

Output

 [0. 0.88137359 -0.88137359]

>>>

Angle Conversion

NumPy includes functions to convert between radians and degrees.

1. Convert Degrees to Radians

The Function np.radians() is used to convert degrees to radians.

Example:

>>> # Python code to convert Degrees to Radians

>>> degrees = np.array([0, 90, 180])

>>> result = np.radians(degrees)

>>> print('Output \n',result)

Output

 [0. 1.57079633 3.14159265]

>>>

2. Convert Radians to Degrees

The function np.degrees() is used to convert radians to degrees.

Example 3.36 illustrate to convert radians to degrees using npdegrees()

function.

>>> # Python code to convert Radians Degrees

>>> radians = np.array([0, np.pi/2, np.pi])

>>> result = np.degrees(radians)

>>> print('Output \n',result)

Output

AI Assistant, Grade X Page 131 / 190

 [0. 90. 180.]

>>>

Other Trigonometric Utilities

1. Compute Hypotenuse

This function computes the hypotenuse of a right triangle given the lengths of

the two perpendicular sides. The function used is np.hypot().

Example 3.37 illustrate to compute Hypotenuse using nphypot() function.

>>> # Python code to compute Hypotenuse

>>> x = np.array([3, 5])

>>> y = np.array([4, 12])

>>> result = np.hypot(x, y)

>>> print('Output \n',result)

Output

 [5. 13.]

These trigonometric functions make NumPy a powerful tool for mathematical

computations involving angles and periodic functions.

AI Assistant, Grade X Page 132 / 190

Module 3. Data Analysis
Session 1. Introduction to Pandas

Pandas is a powerful and popular open-source data analysis and manipulation

library in Python. It is built on top of NumPy and provides easy-to-use data

structures and data analysis tools. Pandas is widely used in data science,

machine learning, and analytics due to its efficiency and flexibility.

The term Pandas is derived from “Panel Data System”, which is an echometric

term for multidimensional, structured dataset.

Pandas are an Open Source, library specially built for Python Programming

language. Pandas offer high performance, easy to use data structure and data

analysis tools for real world need of individual or any organization. The main

author of Pandas is Wes McKinney.

Key Features of Pandas

 Pandas, is the most popular library in Scientific Python ecosystem for data

analysis.

 Quick and efficient data manipulation and analysis.

 It has functionality to find and fill missing data.

 It allows you to apply operations to independent groups within the data.

 It supports reshaping of data into different forms.

 It supports visualization by integrating matplotlib.

 Pandas is best for handling huge tabular (like excel, mysql) data sets

comprising different data formats.

 Pivoting and reshaping data sets

 Easy handling of missing data (represented as NaN) in both floating point

and non-floating-point data.

 Represents the data in tabular form.

 It provides time-series functionality.

 Effective grouping by functionality for splitting, applying, and combining

data sets.

Overview of Pandas in Data Analysis

Pandas are used in data analysis for following 4 reasons.

1. Easy-to-use syntax for data manipulation and transformation.

2. Efficient handling of large datasets.

AI Assistant, Grade X Page 133 / 190

3. Seamless integration with other Python libraries such as Matplotlib and

NumPy.

4. Broad support for varied data formats such as CSV, SQL and Excel.

Pandas optimizes memory usage and computation speed. Supports filtering,

aggregating, and transforming data with minimal code. Pandas’ intuitive syntax

makes complex tasks straightforward. Data loading and storage is easy in

Pandas. Data exploration, data cleaning, data transformation, data merging,

data aggregation and grouping can be done in Pandas with ease. The time series

analysis can also be done in Pandas.

Difference between Numpy and Pandas

NumPy and Pandas are two of the most widely used libraries in Python for data

manipulation and analysis. While they have overlapping functionalities, they are

designed for different purposes and have distinct features. Below is a detailed

comparison:

Key Differences Between NumPy and Pandas

Feature NumPy Pandas

Primary

Purpose

Numerical computations

with n-dimensional

arrays.

Data manipulation and

analysis with labeled data

structures.

Data

Structure

ndarray (multi-

dimensional array).

Series (1D) and DataFrame

(2D).

Flexibility
Efficient for numeric and

homogeneous data.

Handles mixed data types

(e.g., numeric, strings, and

dates).

Data

Indexing

Indexed by integer

positions.

Indexed with labels

(row/column names) and

integers.

Ease of Use

Requires more manual

work for data

manipulation.

Provides high-level methods

for cleaning, transforming,

and exploring data.

File I/O
Limited support for

reading/writing files.

Extensive support for formats

like CSV, Excel, SQL, and

JSON.

Performance

Faster for numerical

operations and larger

datasets.

Slightly slower due to higher-

level abstractions.

Data Cannot handle missing Built-in support for missing

AI Assistant, Grade X Page 134 / 190

Feature NumPy Pandas

Handling
data directly (e.g., NaN

requires extra handling).
data (e.g., NaN, None).

Installation of Pandas

You can install Pandas using Python's package manager, pip, or via conda if

you're using the Anaconda distribution.

Using pip

The simplest way to install Pandas is via pip.

Installation Command

pip install pandas

Upgradation Command

If Pandas is already installed but you want to update it to the latest version:

pip install --upgrade pandas

Verify Installation

To ensure Pandas is installed and check its version:

python

import pandas as pd

print(pd.__version__)

Using conda

If you're using the Anaconda or Miniconda distribution, you can install Pandas

via conda.

Installation Command

conda install pandas

To Update Pandas

conda update pandas

Installing Specific Versions

If you need a particular version of Pandas:

pip install pandas==1.5.3

Common Installation Issues

Missing Dependencies: Ensure you have Python installed version 3.7 or later is

recommended.

Environment Conflicts: Use a virtual environment to avoid conflicts:

python -m venv myenv

source myenv/bin/activate # On macOS/Linux

myenv\Scripts\activate # On Windows

AI Assistant, Grade X Page 135 / 190

pip install pandas

Import Pandas

Once Pandas is installed, import it in your applications by adding the import

keyword as follows:

import pandas

Now Pandas are imported and ready to use. Let us test it using the following

code.

Pandas as pd

In Python alias are an alternate name for referring to the same thing. Pandas is

usually imported under the pd alias. To create an alias with the as keyword

while importing as.

import pandas as pd

Now the Pandas package can be referred to as pd instead of pandas. Here pd is

an object of Pandas library to which you can use in your program.

Data Structures in Pandas

Pandas provides two primary data structures that make data manipulation and

analysis convenient: Series and Dataframe

1. Series

A Series is a one-dimensional labeled array capable of holding data of any type

such as integer, string, and float. It is similar to a column in a spreadsheet or a

one-dimensional array in NumPy.

Key Features are labeled indexes similar to dictionary keys and homogeneous

data, that is, all elements are of the same type.

2. Dataframe

AI Assistant, Grade X Page 136 / 190

A Data Frame is a two-dimensional, tabular, labeled data structure. It is

analogous to a spreadsheet or SQL table and can hold heterogeneous data types

across columns.

Key Features are labeled rows and columns where each column can have a

different data type. And flexible indexing for rows and columns.

Sample Fig

Comparison of Series and DataFrame

Feature Series DataFrame

Dimensions One-dimensional Two-dimensional

Indexing Single index Row and column indexing

Data Type Homogeneous (same type for

all data)

Heterogeneous (different types

for columns)

Structure Similar to a single column or

array

Similar to a spreadsheet or

SQL table

Apart from series and dataframe we can also have index and panel as data

structures in Pandas.

3. Index (Shared by Both Series and DataFrame)

The Index in Pandas provides labels for rows and/or columns, allowing for easy

data alignment and access.

4. Panel (Deprecated)

Pandas previously had a Panel data structure for three-dimensional data. It has

been deprecated in favor of using MultiIndex DataFrames or external libraries

like xarray.

AI Assistant, Grade X Page 137 / 190

Session 2. Coding with Pandas

Now we can start writing small codes in Pandas as given below:

Here in this list, three values are integers and one is float type, so finally the
series type will be float.

Creation of series using dictionary

Example 2.1 illustrates how to create a series with the help of a dictionary.

Dictionary’s keys act as a series index and the dictionary's value’s act as a series
value.

In this example, “Jan”, “Feb”, “Mar” is called series index and 31, 28, 31 are as
series values and the type of series is int type.

AI Assistant, Grade X Page 138 / 190

Creation of series with Scalar value

Let us understand different ways to create a series using the pandas library using
the following code.

Example 2.2

In this code snippet, the range (0, 3) function will generate indexes 0, 1 and 2
given by the programmer. There is only one value “10” which will store in all
indexes.

Example 2.3

In this code snippet, range () functions are used to create index 1, 3 and 5. Here
the index range is 1 to 6, which will start from 1 and increment by 2 and goes up
to 5 only. There is only one value “15” given by the programmer which will store
in all indexes.

Example 2.4

AI Assistant, Grade X Page 139 / 190

Indexes can also be given in the form list that is ‘Hema’, ‘Rahul’, ‘Anup’. This is
given by the programmer and there is only one value “Welcome to CIVE” which
will store in all indexes.

Example 2.5 demonstrate the use of Pandas library to demonstrate
mathematical function/Expression in series.

arange() is numpy library function which stored 9 to 12 numbers into “a” object
and we can use this “a” object values as series index and “data= a * 3” for data
values as shown in Example 2.6.

Example 2.6

Series Object Attributes

Series Attribute Description

Series.index Returns the index of a series

Series.values Returns values of series in the form of ndarray.

Series.dtype Returns the data type of the data object

Series.shape Returns tuple of the shape of underlying data

Series.nbytes
Return number of bytes of underlying data.
The formula is: number of element in series * data type size.

AI Assistant, Grade X Page 140 / 190

Series.ndim Returns the number of dimensions in series.

Series.size Returns number of elements present in series

Example 2.7

Let us create a series to display its different attributes.

Create a series s:

s=pd.Series(range (1,15,3), index=[x for x in ‘abcde’])

Here,

s.index: It will display index of the series i.e. Index([‘a’, ‘ b’, ‘c’ ,‘d’, ‘e’] dtype =
‘object’)

s.values: It will display values of the series i.e. array([1,4,7,1,13], dtype = int64).

s.shape: It will display tuple of the shape of underlying data i.e. (5,)

s.size: It will display number of elements present in series i.e. 5

s.nbytes: It will display number of bytes of underlying data(formula is: number of
element present in series * (multiply by) size of individual element) i.e. 40

s.ndim: It will display the number of dimension(1-D, 2-D) i.e. 1

Consider another example,

Example 2.8

AI Assistant, Grade X Page 141 / 190

In the above example:

s.index: It will display index of the series

s.values: It will display values of the series i.e. array([1,2,3,4,5].

s.nbytes: It will display number of bytes of underlying data(formula is: number of
element

present in series * (multiply by) size of individual element) i.e. 40

s.ndim: It will display the number of dimension(1-D, 2-D) i.e. 1

It is possible to display series data values as per user need. It is known as Series
Slicing. For this we need to pass three parameters i.e. [<start>:<stop>:<step>] It is
illustrated in the Example 2.9.

Example 2.9

AI Assistant, Grade X Page 142 / 190

In the above example,

ob – It will display all values in the series.

Ob[10] – It will display the value at index 10 means 100.

ob[2 : 4] – It will display values 121, 144 at 11, 12 as per given index by user.
Python automatically generates index 0, 1, 2, 3 internally against user’s indexes
9, 10, 11 and 12. So in this code snippet indexes will be treated as 2, 3 means 11
and 12 only. Index no 4 is not included here.

ob[1:] – It will display series values which start with “1” in index up-to end in
normal order i.e. 100, 121 and 144

ob[0: : 2] – Here the starting index is 0, there is no stop point but step is 2. So, it
will display alternative values 81 and 121.

AI Assistant, Grade X Page 143 / 190

ob[: : -1] – It will display series values in reverse order, because there is no start
and stop point. The step is given as -1 means the index will increase negatively.
This is similar to the list slicing concept.

Example 2.10: Write a python code to modify/update a data series.

Observe that the value at index ‘c’ is modified to 25.

Example 2.11: Write a python code to modify / update indexes of a data series.

AI Assistant, Grade X Page 144 / 190

Here in this example, the series is created with the index using a for loop as [‘a’,
‘b’, ‘c’, ‘d’, ‘e’]. Then the index of the series is changed to [‘u’, ‘v’, ‘w’, ‘x’, ‘y’]. So the
new indexes in series are u, v, w, x and y.

head() and tail () Function

Python provides two important functions to access the data values from the series
directly. You can access starting values using head() function and or last values
using tail() function.

head (<n>): The head () function is used to display first/top n rows from a Series.
By default it will display the top/first 5 rows.

tail(<n>): The tail () function is used to display last/bottom n rows from a Series.
By default it will display the last / bottom 5 rows.

Example 2.12: Program illustrates the use of head() and tail() functions.

AI Assistant, Grade X Page 145 / 190

Vector Operations and Arithmetic Operations on series

You can do various arithmetic operations on series data in python just like you
perform it on normal variables.

Example 2.13: Program illustrates vector operations and arithmetic operations
in series. For this first create the three series as shown in the following code.

Now perform arithmetic operation (+, -, * and /) on s1 and s2 as the indexes are
the same in both but not using s3 as it has different indexes.

AI Assistant, Grade X Page 146 / 190

Example 2.14 illustrates the arithmetic operation and vector operation in series.

In the above code the arithmetic and vector operations performed on series are as
follows.

s1+s2: This operation will add each element of series s1 and s2. It will
successfully be done as both the series are similar in nature in terms of their
index number.

s1 + 2: This operation will add 2 to each item of the data series. So we can get 13,
14, 15, 16, 17, 18, and 19 instead of 11, 12, 13, 14, 15, 16 and 17.

s1 * 2: This operation will multiply each item of the data series by 2. So we will
get 22, 24, 26, 28, 30, 32 and 34 instead of 11, 12, 13, 14, 15, 16 and 17.

s1 + s3: This operation will not do appropriately as both series had different types
of indexes. The index of series s1 is [0,1,2,3,4,5,6] while series s3 has index
[10,20,30,40,50] . if indexes are not matched then Python will result in NaN (Not
a number) in Output.

AI Assistant, Grade X Page 147 / 190

Relational Operations on series

It is also possible to perform various relational operations (>, <, >=, <=, ==, !=) on
series data in python to generate Boolean results in the form of True/False. These
operations are also known as filtration in python.

First create a series and then perform the relational operations and delete data
from data Series as shown in Example 2.15.

AI Assistant, Grade X Page 148 / 190

Session 3. Data Visualisation using Matplotlib

Data visualization is the graphical representation of data or information. It is
used to display data in a more expressive way. Data visualization in the form of
charts, graphs, animation, and maps are very easy and simple to understand the
trends, outliers, and patterns in data. Data visualization techniques for such big
data are very important for the purpose of analysis of data.

Data Visualization is the process of representing data graphically to help users
understand patterns, trends, and insights more effectively. It transforms raw data
into visual formats like charts, graphs, and maps, making it easier to analyze and
communicate information.

Importance of Data Visualization

 It simplifies Complex Data, that is, Large datasets become easier to
understand.

 It reveals Trends & Patterns, that is, helps identify relationships within the
data.

 It improves Decision-Making, that is, Visual insights assist in strategic
planning.

 It enhances Communication, that is, makes data accessible to both
technical and non-technical users.

Common Types of Data Visualizations

There are different forms of data visualization such as basic graphs and advanced
graphs

Basic Charts & Graphs

1. Bar Chart: It compares categorical data. A bar plot or bar chart is a graph
that represents the category of data with rectangular bars with lengths and
heights that is proportional to the values which they represent. The bar
plots can be plotted horizontally or vertically.

2. Line Chart: It shows trends over time. Line charts are used to represent the
relation between two data X and Y on a different axis.

3. Pie Chart: It represents proportions of a whole. A Pie Chart is a circular
statistical plot that can display only one series of data. The area of the
chart is the total percentage of the given data. The area of slices of the pie
represents the percentage of the parts of the data. The slices of pie are
called wedges.

AI Assistant, Grade X Page 149 / 190

Fig. 3.1: Basic Charts (a) Bar Chart (b) Line Chart (c) Pie Chart

4. Advanced Visualizations

Maps: It is used for geographic data such as heatmaps. It uses colors, symbols,
and lines to represent different data points on a geographical map.

Scatter Plot: It displays relationships between two variables. A scatter plot is a
graph that shows the relationship between two variables in a data set. It uses
Cartesian coordinates to plot data points on a two-dimensional plane.

Histogram: It represents data distribution. A histogram is a graph that shows
how quantitative data is distributed. It's made up of bars that represent the
number of values that fall into each interval.

Fig. 3.2 : Advanced Visualizations (a) Map (b) Scatter Plot

(c) Histogram

Data Visualization Tools

Some popular data visualization tools are as given below:

1. Matplotlib (Python) – For static plots.
2. Tableau & Power BI – Interactive dashboards.
3. Google Data Studio – Web-based visualization.
4. D3.js – JavaScript library for dynamic visualizations.

In this session we will discuss the Matplotlib tool available with Python.

AI Assistant, Grade X Page 150 / 190

Matplotlib

The Matplotlib is a python library that provides many interfaces and functionality
for 2D-graphics similar to MATLAB. Python scripts can be used to create 2D
graphs and plots using the Matplotlib module. With features to control line styles,
font attributes, formatting axes, and other features, it offers a module named
pyplot that makes things simple for plotting. It offers a huge range of graphs and
plots, including error charts, bar charts, power spectra, and histograms. It is
combined with NumPy to provide a powerful open source MatLab substitute
environment.

Installing Matplotlib

To install Matplotlib library, you need to open the command prompt with
administrator rights and make sure internet connectivity is on. Matplotlib library
and its dependencies can be easily downloaded as a binary file (pre-compiled)
package from the internet very easily.

To install Matplotlib in the Windows operating system, issue the following
command on the command prompt.

It will give the message for successful installation of Matplotlib library.

To install Matplotlib in Ubuntu Linux run the following command in the
command prompt.

pip install matplotlib

It will start downloading and installing packages related to the matplotlib library.

To verify that matplotlib is successfully installed, execute the following command
in the Python idle. If matplotlib is successfully installed, the version of matplotlib
installed will be displayed.

To find out version of Matplotlib, open the Python Idle and find the version using
the following command. The version of Matplotlib is displayed as ‘3.5.1’

>> import matplotlib

>> matplotlib.__version__

'3.5.1'

The version of Matplotlib is displayed as ‘3.5.1’

You can find what directory Matplotlib is installed in by importing it and printing
the __file__ attribute:

Importing Pyplot

AI Assistant, Grade X Page 151 / 190

Pyplot is a set of functions in the Matplotlib library. A figure's elements can be
changed by using its functions, which include constructing a figure, a plotting
area, plot lines, and adding plot labels. Keep in mind that you can alter the line's
colour and style by including the arguments linecolor and linestyle. You need to
use the import keyword as under to use it.

import matplotlib.pyplot as pp

Here pp is a user defined object for pyplot. You can use all the functions in the
pyplot library using this object as per your need.

CREATING LINE CHART

A line chart or line graph is a type of chart which displays information as a series
of data points called ‘markers’ connected by a straight line segment. The pyplot
interface offers a plot() function for creating a line graph.

Example 3.1: Create Line Graph with the help of two given List.

The python code is shown below with the list a and b. The output as a plotted
graph is shown below the program.

The output is shown with the line graph plotted as below.

Example 3.2: Write a program to plot a Line Graph of number of runs and over
provided in two different lists.

The python program and output is given below.

AI Assistant, Grade X Page 152 / 190

Example 3.3 : Let us modify previous examples for changing marker size, edge
color and increase the line width using various parameters of plot() function.

Here in this example, the parameters like marker, markersize, markeredgecolor
and linewidth are used to give specification in line plot.

AI Assistant, Grade X Page 153 / 190

The various codes for marker parameters are given below.

Character Description
‘p’ pentagon marker
‘*’ star marker
‘h’ hexagon1 marker
‘H’ hexagon2 marker
‘+’ plus marker
‘x’ x marker
‘D’ diamond marker
‘d’ thin_diamond marker
‘|’ vline marker
‘_’ hline marker

Example 3.4. Write a python code for creating a line chart with different line
colour.

In this example we have used the arange() function. Variable z is initialized with
multiple instances of values from 0 to 10 with the interval of 0.1 using this
function. These multiple values of z will be passed to sin and cos functions
respectively and the result will be stored in variable a, b.

Now using pp object values of z will be plotted in a line chart along with a and b
within blue and green colour respectively.

AI Assistant, Grade X Page 154 / 190

In the above program, the various colour codes as given below can be used while
preparing the chart as below.

Code Colour Name
“b” Blue
“g” Green
“r” Red
“c” Cyan
“m” Magenta
“y” Yellow
“k” Black
“w” White

CREATING BAR CHART

A Bar Graph/Chart a graphical display of data using bars of different heights. We
can use bar() and barh() for this purpose. We can use width and color parameter
of bar Graph

Example 3.5: Let us create a bar Graph for monthly sale of an electronic items
shop using a list.

AI Assistant, Grade X Page 155 / 190

Creating Multiple Bar Chart

Grouped Bar chart is another name for a multiple bar chart. There are several
ways to customize a bar plot or bar chart, including multiple bar plots, stacked
bar plots, and horizontal bar charts. Typically, multiple bar charts are used to
compare multiple items using the chart graphically.

Example 3.6: Let us create multiple Bar Graphs for monthly sale of Keyboard
and mouse with different colors.

AI Assistant, Grade X Page 156 / 190

Creating Horizontal Bar Chart

As you have prepared a vertical bar graph in example 5, you can prepare a
horizontal bar chart using another bar chart function i.e. barh().

Example 3.7: Modify Example 5 to create Horizontal Bar Chart graph using barh()
function.

CREATING PIE CHART

AI Assistant, Grade X Page 157 / 190

Pie chart is made up of different parts of a circle where each part shows a
particular ratio of data. We can use pie() function to create this type of chart.

The following property we can use with pie Graph like:

Label: Name of Pie

Autopct: Percentage value of Pie in circle

Color: Colours of Pie

Explode: Detached from circle.

Example 3.8: Create a Pie Graph Using salary and name as a list and to use
color, autopct, label, explode property.

Program to create a pie graph is given below.

Chart Anatomy and Saving Graph

Every type of chart has a special structure with its contents/values. The values
for each bar represent a specific category of data. The y-axis is the vertical axis
that runs along either the left or right side of the bar graph. The x-axis is the
horizontal axis located at the bottom of a bar graph. The value of the data is
represented by the height or length of the bars. The common key points in any
bar chart are as under.

Figure – Any chart will be made under this area only. This is the area of plot.

Axes – This is that area which has actual plotting.

AI Assistant, Grade X Page 158 / 190

Axis Label – This is made up of x-axis and y-axis.

Limits – This is the limit of values marked on x-axis and y-axis.

Tick Marks – This is the individual value on x-axis and y-axis.

Title – It is the text to be shown at the top of the plot.

Legends – This is the set of data of different color which is to be used during
plotting.

Example 3.9 : Create a graph to show the anatomy of Chart using legend, xlabel,
ylable, title of Chart and understand how to save the graph as image.

In this code snippet, pp.savefig() function is used to save the chart as an image. It
will save a chart at the given path/location in the function as a parameter.

AI Assistant, Grade X Page 159 / 190

Module 4. Neural Network
Session 1. Artificial Neural Network (ANN)

1.1 Neural Network

A Neural Network or Artificial Neural Network (ANN), constitutes a network of

interconnected neurons. In technical terms, a Neural Network serves as a

machine-learning algorithm inspired by the human brain's working. The brain

processes information by transmitting signals from one neuron to another,

forming neural pathways that dictate functions like memory retention, motor

skills, and speech articulation.

Neural networks, or ANN replicates the brain's functionality by integrating data

inputs, weights, and bias. These components collaborate to effectively identify,

categorize, and describe objects within datasets.

The human brain comprises approximately 86 billion nerve cells, known as

neurons, which communicate with thousands of other cells via axons. Dendrites

receive stimuli from the external environment or sensory organs, generating

electrical impulses that swiftly traverse the neural network. Subsequently, a

neuron may transmit the message to another neuron to address an issue or

withhold its propagation, as shown in Figure 1.1.

Fig. 1.1. (a) Biological Neural Network (b) Artificial Neural Network

AI Assistant, Grade X Page 160 / 190

ANNs are composed of multiple nodes, which imitate biological neurons of the

human brain. The neurons are connected by links and they interact with each

other. The nodes can take input data and perform simple operations on the

data. The result of these operations is passed to other neurons. The output at

each node is called its activation or node value.

Each link is associated with weight. Artificial Neural Networks (ANN) are capable

of learning, which takes place by altering weight values. As shown in Figure 1.2.

a simple Artificial Neural Network (ANN):

Fig. 1.2 Artificial Neural Network (modify the figure and add weight to links)

Similarly, a neural network is made up of a series of nodes that are connected.

Each neuron/node takes in a number of inputs and produces an output. The

outputs of the neurons are then combined to produce the final output of the

neural network. Neural networks can be used to solve a wide variety of problems

and are particularly well-suited for problems that involve pattern recognition.

How Neural Network works

Neural networks operate through data-driven learning. During training, a neural

network receives a dataset along with corresponding desired outputs. Through

iterative adjustments of its internal weights, the network endeavours to generate

the expected outcomes for any given input within the dataset.

Once trained, the neural network becomes proficient at making predictions on

novel data. For instance, if you train a neural network to distinguish between

images of cats and dogs, it can subsequently predict whether a new image

features a cat or a dog. As shown in Figure 1.3.

AI Assistant, Grade X Page 161 / 190

Fig. 1.3 : Working of Neural Network

Consider this simple analogy for understanding neural networks: Think of

teaching a child how to recognize various animals. You begin by showing the

child pictures of different animals and explaining what each one is. Gradually,

the child learns to connect specific features with particular animals; for

instance, they may associate four legs and fur with dogs.

Fig. 1.4 : Teaching a Child

With continued learning, the child forms a mental model of animal appearances,

enabling them to recognize new animals they encounter.

Similarly, neural networks operate by training on data to associate specific

features with desired outputs. Once trained, they can apply this knowledge to

identify new data they haven't encountered previously.

Step-by-Step Working of a Neural Network

Step 1. Receiving Input: The input layer takes in numerical data. For example, if
an image is fed into the network, it is converted into numbers (pixels).

Step 2. Forward Propagation: Each neuron processes inputs by applying a weight
called an importance factor. It uses an activation function such as ReLU, or

AI Assistant, Grade X Page 162 / 190

Sigmoid to decide whether to pass the information forward. The data moves from
the input layer → hidden layers → output layer.

Step 3. Calculating Error (Loss Function): The output is compared to the correct
answer. A loss function calculates how far the prediction is from the actual value.

Step 4. Backpropagation and Learning: The network adjusts weights using
backpropagation, a method that reduces errors. A technique called Gradient
Descent helps improve accuracy.

This process is repeated multiple times, called training, until the network makes
correct predictions.

Breakdown of a Neural Network

The fundamental components and mechanisms that m make functionality of

neural networks:

Neurons:

Artificial neurons, also referred to as nodes or units, lie at the heart of a neural

network. Modelled after biological neurons in the brain, these units serve as the

basic building blocks of the network. Neurons receive inputs, perform

computations, and generate outputs. Neurons are structured into layers within

the neural network.

Layers: There are three primary types of layers:

Input Layer: This marks the inception point of the network, receiving the initial

data or input.

Hidden Layers: These are layers in between where the input data goes in and

the final answer comes out. They do a lot of complicated math to pick out

important things from the input.

Output Layer: This is the last layer that gives you the final answer or guess

based on all the math done in the hidden layers.

Neural networks can have lots of these hidden layers, and each layer can have

different amounts of math-doing units called neurons. When any neural

network is designed, it has to decide how big these layers are and how many

neurons they have. It depends on what specific problem is trying to solve with

the neural network, as shown in Figure 1.5

AI Assistant, Grade X Page 163 / 190

Fig. 1.5 Type of Layers

Connections and weights

Neurons in one layer are connected to neurons in the next layer through

connections. Each connection is associated with a weight, which represents the

strength or importance of the connection.

Fig. 1.6: Connections and weights

These weights determine how much influence a particular neuron has on the

neurons in the next layer. Initially, these weights are assigned random values,

but they get adjusted during the training process to optimize the network’s

performance.

Bias

As you can see in Figure 1.6, bias is a value that is added to the output of each

neuron. The bias helps to prevent the neural network from becoming too

sensitive to small changes in the input data.

Activation Function

In the diagram above, the activation function is clearly marked. An activation

function is a math rule used to change the output of one neuron so it can be

used by the next neuron in the neural network.

These functions are super important because they let the neural network

understand complex patterns in the data. What's a nonlinear function? Well, it's

a relationship between two things where if one thing changes, the other thing

doesn't change by the same amount every time.

There are lots of activation functions to pick from for neural networks. Which

one has to be chosen depends on what kind of problem is trying to solve with

the network.

Feedforward Propagation

When data enters a neural network, it flows through the layers in a process

called feedforward propagation. Each neuron receives inputs from the previous

layer, multiplies them by their corresponding weights, sums them up, and

AI Assistant, Grade X Page 164 / 190

applies the activation function. This process continues layer by layer until the

output layer produces the final result.

Backpropagation

Backpropagation is a method used in machine learning to teach neural

networks. It starts from the output layer of the network and moves backward,

correcting errors along the way. At each step, it calculates how far off the

network's guess was and adjusts the weights and biases of the neurons

accordingly. This process repeats until the difference between what the network

guessed and what it should have guessed is as small as possible. By minimizing

these errors, we make the neural network better at learning and improve its

ability to tackle tasks, making it a valuable tool in machine learning.

Practical Activity 1.1. Demonstrate the deep learning method by building a

hypothetical airplane ticket price estimation service.

Material needed

Computer, paper for writing

Procedure

Here a supervised learning method is used to train the system.

Step1. Airplane ticket price estimator predict the price using the following

inputs (excluding return tickets for simplicity)

● Origin Airport

● Destination Airport

● Departure Date

● Airline

Step 2. Like animals, our estimator AI’s brain has neurons. They are

represented by circles. These neurons are inter-connected. The neurons are

grouped into three different types of layers:

1. Input Layer

2. Hidden Layer(s)

3. Output Layer

The input layer receives input data. In our case, we have four neurons in the

input layer: Origin Airport, Destination Airport, Departure Date, and Airline.

The input layer passes the inputs to the first hidden layer.

Step 3. The hidden layers perform mathematical computations on our inputs.

One of the challenges in creating neural networks is deciding the number of

hidden layers, as well as the number of neurons for each layer. The “Deep” in

AI Assistant, Grade X Page 165 / 190

Deep Learning refers to having more than one hidden layer.

Step 4. The output layer returns the output data. In this case, it gives the price

prediction.

Fig. 1.7

Step 5. Each connection between neurons is associated with a weight. This

weight dictates the importance of the input value. The initial weights are set

randomly.

Step 6. When predicting the price of an airplane ticket, the departure date is

one of the heavier factors. Hence, the departure date neuron connections will

have a big weight.

Fig. 1.8

Once a set of input data has passed through all the layers of the neural

network, it returns the output data through the output layer.

AI Assistant, Grade X Page 166 / 190

Session 2 Applications of Neural Network
Artificial Neural Networks (ANNs) are a crucial part of Artificial Intelligence (AI)
and Machine Learning (ML). Inspired by the human brain, ANNs consist of
interconnected nodes (neurons) that process and analyze complex data. Due to
their ability to learn patterns, make decisions, and improve accuracy over time,
ANNs are widely used across various industries.

1. Image and Speech Recognition

a) Face Recognition: It is used in security systems, smartphones, and social
media platforms like Facebook for automatic tagging. It can be used in
applications such as, facial authentication for unlocking devices, surveillance
systems, and biometric verification (Figure 2.1).

Fig. 2.1 : Biometric Verification

b) Speech-to-Text Conversion: Virtual assistants like Siri, Google Assistant, and
Alexa use ANNs to convert human speech into text. It can be used in applications
such as, automated customer service, real-time transcription, and voice-activated
systems (Figure 2.2).

Fig. 2.2 : Voice Activated System

c) Handwriting Recognition: Converts handwritten text into digital format using
pattern recognition techniques.

Applications: Postal address scanning, bank cheque processing, and digitization
of historical manuscripts.

2. Healthcare and Medical Diagnosis

a) Disease Detection: ANNs help in diagnosing diseases like cancer, diabetes, and
Alzheimer’s by analyzing medical imaging such as, X-rays, MRIs, CT scans. AI-

AI Assistant, Grade X Page 167 / 190

driven tools assist radiologists in detecting tumors and anomalies with higher
accuracy.

Fig. 2.3 : Medical Imaging Using ANN

b) Drug Discovery and Development: It can predict the effectiveness of new drugs
by analyzing molecular structures and biological interactions. It speeds up
pharmaceutical research and reduces costs.

Fig. 2.4 : AI in Pharmacy Research

c) Patient Monitoring: Wearable devices such as smartwatches, fitness bands
track health parameters like heart rate, blood pressure, and oxygen levels. Apple
Watch detects irregular heartbeats and alerts users about potential heart
conditions.

Fig. 2.5 : Patient Monitoring Using ANN

AI Assistant, Grade X Page 168 / 190

3. Autonomous Vehicles (Self-Driving Cars)

a) Object Detection and Recognition: ANNs help detect objects like pedestrians,
cyclists, traffic signs, and other vehicles. It is used in Tesla Autopilot and Google’s
Waymo self-driving cars.

Fig. 2.6: Autopilot

b) Lane Detection and Path Planning: Neural networks analyze road images to
ensure vehicles stay within lanes. It uses computer vision and deep learning to
detect road boundaries.

c) Decision-Making in Real-Time: Self-driving cars process vast amounts of data
from sensors and cameras to make quick decisions. For example, determining
whether to stop at a pedestrian crossing or take an alternate route in case of
traffic congestion.

4. Finance and Banking

a) Fraud Detection: ANN models analyze transaction patterns to detect suspicious
activities. Banks use AI to flag unusual credit card transactions and prevent
cyber fraud.

b) Stock Market Prediction: Predicts future stock prices based on historical trends
and market news sentiment analysis. For example, hedge funds and investment
firms use ANN models for algorithmic trading.

Fig. 2.7: Algorithmic Trading

AI Assistant, Grade X Page 169 / 190

c) Chatbots and Customer Support: AI-driven virtual assistants provide instant
responses to customer queries. Example: Banking chatbots like HDFC EVA and
SBI’s AI assistant help customers with account details, transactions, and loan
inquiries.

Fig. 2.8: AI Assistant

5. Robotics and Automation

a) Industrial Automation: Neural networks help in robotic assembly lines, defect
detection, and predictive maintenance. Example: AI-powered robots used in
automobile manufacturing and semiconductor fabrication.

b) Humanoid Robots: Robots powered by ANNs assist in healthcare, education,
and customer service. For example, Sophia, developed by Hanson Robotics,
interacts with humans using ANN-based NLP models.

Fig. 2.9 : Sophia Robot

c) Agriculture and Farming: AI-powered drones and robots analyze soil health,
detect pests, and optimize irrigation. For example, Blue River Technology uses AI
to identify weeds and spray herbicides precisely.

AI Assistant, Grade X Page 170 / 190

Fig. 2.10: Agriculture Robot

6. Natural Language Processing (NLP) and Text Analysis

a) Machine Translation: Neural networks power translation services like Google
Translate, DeepL, and Microsoft Translator. For example, Translating entire
documents from English to Hindi in real-time.

b) Sentiment Analysis: ANN models analyze customer reviews, social media
comments, and news articles to determine sentiment (positive, negative, or
neutral). For example, Businesses use sentiment analysis for brand reputation
management.

c) Chatbots and Virtual Assistants: AI chatbots understand human language and
provide human-like responses. For example, ChatGPT, IBM Watson, and Google
Bard process customer inquiries and automate responses.

Fig. 2.11 : ChatGPT

7. Gaming and Entertainment

a) AI Opponents in Games: ANN-powered Non-Player Characters (NPCs) make
games more interactive and realistic. For example, DeepMind’s AlphaGo defeated
world champions in the game of Go using ANN models.

AI Assistant, Grade X Page 171 / 190

Fig. 2.12 : Alphago

b) Content Recommendation Systems: Streaming platforms use ANN models to
suggest movies, videos, and music based on user preferences. For example,
Netflix, YouTube, and Spotify recommend content based on user history.

Fig. 2.13 : Netflix Content Recommendation System

c) Deepfake Technology: Neural networks generate hyper-realistic AI-generated
images and videos. Used in the entertainment industry for special effects and
voice synthesis.

Fig. 2.14 : Image Creation using Deepfake Technology

AI Assistant, Grade X Page 172 / 190

8. Cybersecurity and Network Security

a) Intrusion Detection Systems: Detects suspicious activities in networks and
prevents cyber-attacks. For example, Firewalls and malware detection software
use ANN to identify threats.

b) Email Spam Filtering: Identifies spam, phishing emails, and fraudulent
activities. For example, Gmail’s AI-powered spam filter prevents malicious emails
from reaching users.

c) Secure Authentication Systems: Biometric security using fingerprint scanning,
facial recognition, and voice authentication. For example, iPhone Face ID and
fingerprint sensors in banking apps.

Fig. 2.15 : Face ID on phone

9. Education and E-Learning

a) Personalized Learning Systems: AI-powered platforms adjust the difficulty level
of courses based on student performance. For example, Khan Academy and
Duolingo use AI for adaptive learning.

Fig. 2.16: AI for Education

b) Automatic Grading and Plagiarism Detection: AI analyzes written content and
provides instant feedback on assignments. For example, Turnitin and Grammarly
use ANN models for grammar correction and plagiarism detection.

c) Virtual Teaching Assistants: AI tutors answer students' queries in real-time.
For example, IBM Watson Tutor helps students with homework and complex
concepts.

Fig. 2.17: IBM Watson

AI Assistant, Grade X Page 173 / 190

Artificial Neural Networks (ANNs) have revolutionized multiple industries by
enabling machines to learn, adapt, and improve their decision-making abilities.
From healthcare and finance to autonomous vehicles and gaming, ANNs are
shaping the future of AI-driven innovations. With advancements in deep learning
and computational power, the impact of ANNs will continue to grow, making
technology more efficient, intelligent, and human-like.

AI Assistant, Grade X Page 174 / 190

Session 3. Machine Learning Tools

Machine learning (ML) tools are essential for developing, training, and deploying
AI models efficiently. These tools provide frameworks, libraries, and platforms
that help data scientists and developers create intelligent applications without
having to build algorithms from scratch.

Categories of Machine Learning Tools

Machine learning tools can be classified into the following categories:

1. Frameworks and Libraries

2. Integrated Development Environments (IDEs)

3. Data Preparation and Visualization Tools

4. Model Deployment and Monitoring Platforms

5. AutoML Platforms

1. Frameworks and Libraries

These provide essential functions for building and training machine learning
models.

(i) TensorFlow: Developed by Google, TensorFlow is an open-source framework
for deep learning and ML model development.

Fig. 3.1 : TensorFlow Web site

(ii) PyTorch: Developed by Facebook, PyTorch is popular for its ease of use and
dynamic computation graph, ideal for deep learning research.

Fig. 3.2 : PyTorch Web

(iii) Scikit-learn: A simple and efficient tool for data mining and ML, providing a
range of supervised and unsupervised learning algorithms.

AI Assistant, Grade X Page 175 / 190

Fig. 3.3 : Scikit-Learn web

(iv) Keras: A high-level neural networks API, running on top of TensorFlow for
fast experimentation.

(v) XGBoost: An optimized gradient boosting library designed for speed and
performance.

Fig. 3.4 : XGBoost

2. Integrated Development Environments (IDEs)

These environments support the development and execution of ML models
efficiently.

(i) Jupyter Notebook: An interactive computing environment that supports live
code, equations, visualizations, and narrative text.

Fig. 3.5 : Jupyter Notebook

AI Assistant, Grade X Page 176 / 190

(ii) Google Colab: A cloud-based platform that provides free GPU/TPU support
for executing ML models.

Fig. 3.6 : Google Colab

(iii) Spyder: A Python-based IDE for data science and ML development.

Fig. 3.7 : Spyder

3. Data Preparation and Visualization Tools

Data is a crucial aspect of ML, and these tools help in data preprocessing and
visualization.

(i) Pandas: A powerful library for data manipulation and analysis.

(ii) NumPy: A fundamental package for numerical computing in Python.

(iii) Matplotlib & Seaborn: Libraries used for data visualization to understand
patterns and distributions.

(iv) Tableau: A visualization software that helps create interactive and
shareable dashboards.

4. Model Deployment and Monitoring Platforms

Once an ML model is trained, it needs to be deployed and monitored for
performance.

(i) TensorFlow Serving: A flexible, high-performance ML model serving system.

(ii) AWS SageMaker: A fully managed service for building, training, and
deploying ML models at scale.

(iii) Google AI Platform: A cloud-based service for training and deploying ML
models.

AI Assistant, Grade X Page 177 / 190

(iv) MLflow: An open-source platform to manage the ML lifecycle, including
experimentation, deployment, and monitoring.

5. AutoML Platforms

AutoML tools automate ML processes, making them accessible to non-experts.

(i) Google AutoML: Provides a suite of ML solutions with minimal expertise
required.

(ii) H2O.ai: Offers AutoML capabilities to simplify ML model creation.

(iii) Microsoft Azure AutoML: Automates ML model selection, tuning, and
deployment.

(iv) AutoKeras: An open-source AutoML library built on top of Keras.

Machine learning tools are critical for accelerating AI development. Whether for
data preprocessing, model training, or deployment, choosing the right tool
depends on project requirements, scalability needs, and expertise levels. As ML
continues to evolve, these tools will play a vital role in simplifying AI development
and making it more accessible.

AI Assistant, Grade X Page 178 / 190

Module 5. AI Project
Session 1. Project Guidelines

1. Objectives of Project Work

 To train students to independently formulate and solve social,
philosophical, commercial, or technological problems by using AI and
present the results in both written and oral form.

 To expose students to real-life problems in the World of Work.

 To provide students with opportunities to interact with people and
understand human relations.

2. About the Project Work

 The project carries --- Credit Points and is graded out of --- marks.

 Every project will have a guide from school.

 A person providing guidance from the industry or business world will serve
as the External Guide.

 The Internal Guide is the counsellor responsible for guiding the student.

 Students must report their project progress to the internal guide three
times during the course of the project work.

 At the end of the project, students must prepare a document of their work
in the form of a Project Report.

3. Development Process

Students are supposed to complete their project work within a period of ---
months. Development process contain following points.

1. Project Definition

(i) Clearly define the problem statement and project objectives.

(ii) Identify key stakeholders and end-users.

(iii) Determine the feasibility and impact of the AI solution.

(iv) Establish success criteria and key performance indicators (KPIs).

2. Data Collection and Preparation

(i) Identify data sources required for the project.

(ii) Ensure data quality by handling missing values, inconsistencies, and
noise.

(iii) Split data into training, validation, and test sets.

(iv) Comply with ethical and legal standards, including data privacy regulations
(GDPR, CCPA, etc.).

3. Model Selection and Development

(i) Choose the appropriate machine learning or deep learning model.

AI Assistant, Grade X Page 179 / 190

(ii) Use frameworks like TensorFlow, PyTorch, or Scikit-learn based on project
needs.

(iii) Optimize model performance through hyperparameter tuning.

(iv) Implement explainability techniques to interpret model decisions.

4. Training and Evaluation

(i) Train the model on a well-prepared dataset.

(ii) Evaluate model performance using suitable metrics (accuracy, precision,
recall, F1-score, etc.).

(iii) Perform cross-validation to prevent overfitting.

(iv) Compare model results with baseline methods.

5. Deployment Strategy

(i) Select an appropriate deployment platform (cloud, edge devices, on-
premises).

(ii) Containerize the model using Docker for portability.

(iii) Use APIs for integration with existing applications.

(iv) Implement monitoring tools to track model performance post-deployment.

6. Performance Monitoring and Maintenance

(i) Continuously monitor model accuracy and update as needed.

(ii) Set up automated alerts for model drift detection.

(iii) Regularly retrain the model with new data.

(iv) Maintain logs and documentation for reproducibility.

7. Ethical Considerations and Compliance

(i) Ensure fairness and eliminate bias in the AI model.

(ii) Adhere to AI governance policies and ethical guidelines.

(iii) Maintain transparency by documenting decision-making processes.

(iv) Ensure AI-driven decisions align with societal and business ethics.

8. Project Documentation and Reporting

(i) Maintain thorough documentation, including methodology, code, and
results.

(ii) Provide periodic reports to stakeholders on project progress.

(iii) Create user guides and technical documentation for end-users.

(iv) Store source code and datasets securely for future reference.

9. Collaboration and Team Coordination

(i) Assign clear roles and responsibilities to team members.

(ii) Use project management tools like Jira, Trello, or Asana.

(iii) Maintain version control with Git and conduct regular code reviews.

(iv) Foster cross-functional collaboration between data scientists, engineers,
and business teams.

AI Assistant, Grade X Page 180 / 190

10. Scalability and Future Improvements

(i) Design models with scalability in mind for future enhancements.

(ii) Plan for system upgrades and performance optimization.

(iii) Explore automation possibilities for reducing manual efforts.

(iv) Keep track of emerging AI trends to incorporate innovations into the
project.

By following these guidelines, AI projects can be executed efficiently, ensuring
robustness, fairness, and long-term sustainability.

AI Assistant, Grade X Page 181 / 190

Session 2. Project Formats
AI Project Synopsis

Use the following format for preparation of synopsis at the beginning of project
work.

1. Title of the Project

(Provide a concise and clear title for the project.)

2. Introduction

(A brief introduction to the project, its purpose, and its significance.)

3. Objectives/ Existing System and Need for System

(List the main objectives of the project, specifying what it aims to achieve.)

4. Scope of the Project

(Define the boundaries of the project, including functionalities and limitations.)

5. Technologies Used

(Outline the programming languages, frameworks, databases, and tools used.)

6. System Architecture

(A high-level description of the system design, including a block diagram if
applicable.)

7. Modules and Functionalities

(Divide the project into key modules and briefly describe their roles and
functionalities.)

 Module 1: Description

 Module 2: Description

 Module 3: Description

8. Methodology

(Describe the software development model used, e.g., Agile, Waterfall, etc.)

9. Expected Outcome

(Explain the expected results and benefits of the project.)

10. Conclusion

(A summary of the project's importance and impact.)

11. References (if any)

(List of books, websites, or papers referred to in the project.)

AI Final Project Writing Format

1. Title Page

 Project Title

 Author(s) / Team Members

 Institution / Organization

 Date of Submission

AI Assistant, Grade X Page 182 / 190

2. Abstract

 A brief summary of the project, including objectives, methodology, and key
findings.

3. Introduction

 Background information on the problem domain.

 Problem statement and significance of the project.

 Objectives and expected outcomes.

4. Literature Review

 Overview of existing research and technologies related to the project.

 Comparison of different approaches and their limitations.

 Justification for the chosen methodology.

5. Methodology

 Data collection sources and preprocessing techniques.

 Machine learning or deep learning models used.

 Algorithms, tools, and frameworks utilized.

 Training and evaluation process.

6. Implementation

 Step-by-step description of model development.

 Code snippets (if necessary) and explanations.

 System architecture and workflow diagrams.

7. Results and Analysis

 Model performance metrics (accuracy, precision, recall, etc.).

 Visualizations of data and results (graphs, tables, etc.).

 Comparison with baseline models or previous research.

8. Discussion

 Interpretation of results and insights gained.

 Challenges faced during the project.

 Potential improvements and future scope.

9. Conclusion

 Summary of key findings and achievements.

 Final remarks on the impact and usability of the AI solution.

10. References

 Citation of books, research papers, and online sources used.

11. Appendices (if applicable)

 Additional data, code documentation, or supplementary materials.

This structured format ensures clarity, consistency, and professionalism in AI
project documentation.

AI Assistant, Grade X Page 183 / 190

Session 3. Project Review
Use following Project Review Chart for Evaluation of Project

Project Stage Evaluation Criteria Rating (1-5) Comments

Project Definition

Clarity of problem
statement and objectives

Feasibility and relevance
of the project

Research and
Background

Adequacy of literature
review

Comparison with existing
solutions

Data Collection

Data sources identified
and validated

Data preprocessing and
cleaning

Methodology

Appropriateness of ML/AI
models used

Justification for chosen
algorithms

Implementation

Accuracy of model
execution and training

Efficiency and
optimization of the
solution

Evaluation &
Testing

Performance metrics
assessment

Model validation and
cross-validation

Deployment

Deployment strategy
(cloud, edge, local)

Scalability and usability of
the solution

Results &
Analysis

Presentation and
visualization of results

Interpretation and
discussion of findings

AI Assistant, Grade X Page 184 / 190

Ethical
Considerations

Bias mitigation strategies

Compliance with
regulations

Documentation

Clarity and completeness
of project documentation

References and citations
included

Overall
Evaluation

Project innovation and
uniqueness

Final Score: _______/-----

This review chart provides a structured approach to assessing each phase of an
AI project. Ratings (1-5) help gauge the project's quality and effectiveness.

AI Assistant, Grade X Page 185 / 190

Session 4. Sample Project
AI Final Project

1. Title Page

Project Title: Sentiment Analysis on Customer Reviews
Author(s) / Team Members: X, Y
Institution / Organization: XYZ University
Date of Submission: March 7, 2025

2. Abstract

This project aims to develop a sentiment analysis model to classify customer
reviews as positive, negative, or neutral. Using Natural Language Processing (NLP)
techniques and machine learning, we preprocess and analyze text data to extract
meaningful insights. The project employs a logistic regression model and deep
learning techniques for sentiment classification, achieving an accuracy of 85%.
The results can help businesses understand customer opinions and improve their
services.

3. Introduction

Background Information

Customer reviews are a valuable source of feedback for businesses. Analyzing
these reviews manually is time-consuming and inefficient. Sentiment analysis, an
NLP technique, automates this process by categorizing opinions into sentiment
classes.

Problem Statement

Existing sentiment analysis systems often struggle with contextual
understanding and sarcasm, leading to misclassification. Our project aims to
improve sentiment classification accuracy using machine learning.

Objectives

 Develop a machine learning model for sentiment classification.

 Improve accuracy through preprocessing and model optimization.

 Provide a user-friendly interface for sentiment analysis.

4. Literature Review

Existing Research

Several approaches exist for sentiment analysis, including lexicon-based methods
and machine learning models like Naive Bayes, Support Vector Machines, and
deep learning models.

Comparison of Approaches

 Lexicon-based methods: Depend on predefined word lists but lack context
understanding.

 Machine learning models: Require labeled data but generalize well.

 Deep learning models: Capture complex patterns but need large datasets.

AI Assistant, Grade X Page 186 / 190

Justification

We chose logistic regression for baseline performance and a deep learning model
for improved accuracy due to its ability to understand complex linguistic
patterns.

5. Methodology

Data Collection

 Dataset: IMDB and Amazon customer reviews.

 Preprocessing: Tokenization, stopword removal, stemming, and vectorization
using TF-IDF.

Machine Learning Models

 Logistic Regression for baseline.

 LSTM (Long Short-Term Memory) neural network for deep learning.

Tools and Frameworks

 Python, Scikit-learn, TensorFlow, NLTK, Pandas, Matplotlib.

Training and Evaluation

 Split dataset into training (80%) and testing (20%).

 Evaluation metrics: Accuracy, Precision, Recall, F1-score.

6. ImplementationSteps

1. Data preprocessing: Cleaning and transforming text data.

2. Feature extraction: Converting text into numerical representation.

3. Model training: Training both logistic regression and LSTM models.

4. Model evaluation: Measuring performance using metrics.

System Architecture

 Input: Customer reviews.

 Processing: NLP preprocessing and model prediction.

 Output: Sentiment classification (Positive/Negative/Neutral).

Code Implementation

import pandas as pd

import numpy as np

import re

import nltk

from nltk.corpus import stopwords

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, LSTM, Dense, SpatialDropout1D

AI Assistant, Grade X Page 187 / 190

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

Load dataset

df = pd.read_csv('customer_reviews.csv')

Preprocessing

def clean_text(text):

 text = re.sub(r'[^a-zA-Z]', ' ', text)

 text = text.lower()

 text = text.split()

 text = [word for word in text if word not in
stopwords.words('english')]

 return ' '.join(text)

df['cleaned_reviews'] = df['review'].apply(clean_text)

TF-IDF Vectorization

vectorizer = TfidfVectorizer(max_features=5000)

X = vectorizer.fit_transform(df['cleaned_reviews']).toarray()

y = df['sentiment']

Train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Logistic Regression Model

lr_model = LogisticRegression()

lr_model.fit(X_train, y_train)

Evaluate Logistic Regression

y_pred = lr_model.predict(X_test)

print("Logistic Regression Accuracy:", accuracy_score(y_test,
y_pred))

print(classification_report(y_test, y_pred))

Deep Learning Model with LSTM

max_words = 5000

max_len = 200

AI Assistant, Grade X Page 188 / 190

tokenizer = Tokenizer(num_words=max_words)

tokenizer.fit_on_texts(df['cleaned_reviews'])

X_seq = tokenizer.texts_to_sequences(df['cleaned_reviews'])

X_pad = pad_sequences(X_seq, maxlen=max_len)

X_train_dl, X_test_dl, y_train_dl, y_test_dl =
train_test_split(X_pad, y, test_size=0.2, random_state=42)

model = Sequential()

model.add(Embedding(max_words, 128, input_length=max_len))

model.add(SpatialDropout1D(0.2))

model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))

model.add(Dense(3, activation='softmax'))

model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])

model.fit(X_train_dl, y_train_dl, epochs=5, batch_size=64,
validation_data=(X_test_dl, y_test_dl))

7. Results and Analysis

Performance Metrics

Model Accuracy Precision Recall F1-score

Logistic Regression 78% 76% 74% 75%

LSTM 85% 83% 82% 83%

Visualizations

 Confusion matrices for both models.

 Accuracy and loss curves for LSTM model.

8. Discussion

Interpretation of Results

 The LSTM model performed better than logistic regression.

 Challenges included handling sarcasm and ambiguous sentiments.

Potential Improvements

 Incorporating transformer-based models like BERT for better contextual
understanding.

 Expanding the dataset to include multiple domains.

9. Conclusion

This project successfully implemented sentiment analysis using machine learning
and deep learning. The LSTM model achieved an 85% accuracy, demonstrating its
potential for real-world applications in customer feedback analysis.

AI Assistant, Grade X Page 189 / 190

10. References

 Jurafsky, D., & Martin, J. H. (2021). Speech and Language Processing.

 Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis.

 Research papers on sentiment analysis techniques.

11. Appendices

 Sample code for data preprocessing and model training.

 Additional graphs and visualizations.

 Hyperparameter tuning details for deep learning models.

AI Assistant, Grade X Page 190 / 190

	2.1 Python Functions
	Example 2.5 illustrate the use of Python library function.
	Advantages of user-defined functions

	2.3 Python Function Arguments
	Example 2.10: Write a python code to add two numbers using a function with arguments.
	Function Argument with Default Values
	Python Function with Arbitrary Arguments
	Local Variables
	Global Variables
	Nonlocal Variables

	Global Keyword
	Access and Modify Python Global Variable
	Rules of global Keyword

	2.5 Recursion
	Advantages of Recursion
	Disadvantages of Recursion
	Manage Conda Environments

	Creating Arrays in NumPy
	
	
	Checking Dimensions of Array

	NumPy Arrays Vs Python Lists
	Data Types in NumPy
	There are a large number of data types that are supported by NumPy. For example, in NumPy we can have integer type, floating type, complex type, Boolean type, string type, object type, date and time type.
	Integer Type
	This type is used for storing whole numbers with varying bit sizes and signs.

	Series Object Attributes
	3. Development Process

